This transcript was exported on Aug 12, 2024 - view latest version here.

Carl Stalling:

Xavier Leroy:

Carl Stalling:

Xavier Leroy:

This is ACM ByteCast, a podcast series from the Association for Computing
Machinery, the world's largest education and scientific computing society. Talk
to researchers, practitioners, and innovators who are at the intersection of
computing research and practice. They share their experiences, the lessons
they've learned, and their own visions for the future of computing. I'm your
host, Carl Stalling.

Our next guest is Xavier Leroy. Xavier Leroy is a French computer scientist and
programmer, best known for his role as a primary developer of the OCaml
system and programming language. He's a professor of software science at the
College de France since 2018. Before that, he was a senior scientist at the INRIA.
He studied mathematics and computer science at the Ecole Normale Supérieure
in Paris, receiving a PhD in computer science in 1992. He's an expert on
functional programming languages and compilers. In recent years, he's taken an
interest in formal methods, formal approved and certified compilation. He is the
leader of the CompSUR project that develops an optimizing compiler for the C
programming language. Formally verified in COQ. In 2015, he was named fellow
of the association for Computing Machinery for contributions to save high
performance functional programming languages and compilers and to compile a
verification. He has also received the 2016 Milner Award by the Royal Society,
the 2021 ACM Software Systems Award, and 2022 ACM SIG Plan Programming
Languages Achievement Award. It is a very great pleasure to have you on
[foreign language 00:01:41] podcast.

Thank you for this invitation to talk with you and for the nice introduction. It's a
pleasure to be here, too.

Of course. I'll have to ask about OCaml. I've been using ML style languages a fair
bit myself back in my day when | was still programming, but also for teaching.
To me, OCaml always felt a lot more like a practical tool for working
programmers than SMLC. There were all these small details that really made a
difference to me when | was actually working. That made me think when they
created this, they were really thinking about a working programmer. They really
cared for the usability for the practical tools. | wonder how much of concern
was that when you designed OCaml, this practical perspective of it?

Well, it was certainly on my mind. Actually, let me go back to my first encounter
with ML-like languages. In France, that area in the book where | ended up doing
my PhD thesis, there was already some work on an ML language called Caml,
which was very much inspired by Robin Milner's work like Standard ML of New
Jersey. Where it was a heavyweight was running only on workstations, but still it
was a beautiful language. When | was exposed to it as a grad student, |
immediately fell in love with it. My first object with another grad student called
Daniel Delije was to do a lightweight implementation of CamL. Simplifying a bit
the language and then having a very simple runtime system written in C, by
code compilation, really a minimal implementation. The first goal was to teach
ourselves how it works, and that was very instructive, but it ended up being also

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 1 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Carl Stalling:

Xavier Leroy:

the first open source implementation. When we distributed it, it worked well for
teaching and popularizing the language.

One of the design criteria was that to run on the PCs and the Macs of the day in
one megabyte of ram. That was some of the practical constraints that we took
into account. Also, since it was pretty small, it was a very good vehicle for
research and experimentation with the language. It's true that even at that time
it was obvious that making it a good unique citizen with a common line
compiler, something that no IDE, just maybe a little bit of integration into E-
Macs would be just easier because we had very limited resources.

A few years later after | did my PhD, after my post-doc at Stanford, | was back to
France in a dominant position. Then | did the OCaml system with some other
colleagues. Then we really tried to do a state-of-the-art compiler, something
that would really be a state of a state-of-the-art ML with high-performance
compiler with some language extensions like new module system and things like
that. Some investigation into object-oriented programming. It's true that we
kept this efficient runtime system, relatively lightweight command-line
approach producing standalone executables and so on. Indeed, it paid a few
years later. The initial uses for OCaml and the initial goals for it were for
symbolic processing of course. Improving program analysis for transformation,
compilations. Then we got our first users in systems, basically.

Things like distributed systems at Cornell and later IBM. Also. Let me remind
you, some early web experiments like web crawling, then some real-time
trading at Jane Street Capital, which is still a big actor in the OCaml| community
these days. Unikernels, applications that boot straight on top of a hypervisor,
the Mirage system, blockchains like the Tezos blockchains. All those systems
applications that were absolutely not planned initially. It turned out that OCaml
is a pretty decent language for that, because it's relatively lightweight in terms
of resource usage, he memory management, for instance, has low latency, there
has no big pauses, so it's almost softly all the time. Then of course you get the
benefits of a M Lite language, so functional power type safety and all those
things. | think we found a pretty good niche in the world of functional
programming and programming languages in general between relatively low
level applications and the safety that you get from high level functional
languages.

Right. Now you mentioned Jane Street Capital and blockchain applications. Well
those are obviously financial applications. Are you aware of other areas besides
that where OCaml is being used in industry today? Also why is it that the
financial world to Ocaml ... | mean soft, real-time capabilities, that's not unique
to OCaml, right?

That is true. Yeah. Maybe I'll answer the first part of the question. For Jane
Street, it was because they have, CTO did a PhD at Cornell and this project

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 2 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Carl Stalling:

Xavier Leroy:

Carl Stalling:
Xavier Leroy:

Carl Stalling:

[inaudible 00:07:06] distance project. He was very keenly aware of what you can
do with a language like OCaml.

Serendipity basically, right? A lucky accident in a way?

| think Jane Street liked the language perhaps more than lower level languages,
because the code is fairly readable and they could have it reviewed by non-
computer scientists, also by financial engineers. That's very important for them.
I think in this aspect it was a good deal and maybe that's not a very good reason,
but it helped them set the bar higher for hiring. When you're a Java shop, you
have thousands of resumes that come from people who have a standard
training in CS.

When you say, okay, you must be fluent in OCaml, you immediately get fewer
resumes but have higher quality and often people who have Masters or even
PhDs. It's also a way to select your program of population. As a regard other
uses of OcamlL, industrial uses where there are some static analysis tools like the
Absinthe company in Germany, they do the Astray Static Analyzer, which shows
the absence of undefined behavior in C code and it's used at Airbus and in the
automotive industry. Yeah, a formal methods tool, basically. A verification tools,
code generation tools like the SCADE compiler that is used to produce a lot of
embedded code in cars and airplanes and trains like the Eurostar train. The
compiler, which is a very critical piece of software. It's also written in OCaml.

Then, as | said, there's this such project which is kind of interesting. I'm not sure
whether it's still academic or already kind of industrial, but the idea is really
that, for many applications, you don't need a full operating system. You can just
take your application statically linked it with some low-level systems libraries
like a TCP stack for instance, and some basic memory management. Then you
get something that can boot on typically on virtualized hardware. It's cool,
because it's very secure, it boots very quickly so you can boot your mail server
every time you get a new email and stop it in between mails. That's fine. It's
really, | think, a new way of looking at systems and systems infrastructure that
maybe will have some big impact in the future. | don't know.

Sounds like some kind of microservice at a cloud environment.
It's the same kind of service, the same kind of ideas.

Right. Right. Now | am interested in the role of formal verification. If | ask my
industry colleagues, they'll probably scoff at me and say, well formal
verification, who's interested in that? We don't need that. The client doesn't ask
for it. Then again, there are some applications, for instance cloud infrastructure,
where reliability is at a completely different level than regular information
systems. You just mentioned a couple of examples. Verification basically started
in the 1960s as a vision of a mathematician and so many people have
contributed to it over these decades and so many tools have been created. |

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 3 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Xavier Leroy:

Carl Stalling:

know of a couple of applications. | wonder what is your view? Are we very
closely making this a practicality so that a verification can be done where it's
worth? Is it always going to be confined to a niche of high risk applications or do
you see a path where this becomes much more common?

All right. You add that formal verification was born in the ‘60s on the work of
pioneers like Floyd and Hoare, and | think it made slow progress in usability,
things like SMT solving. Progress is in automated improving helped make the
approach of or much more usable in the 2000’s. There have also been some
more automated techniques that have been developed in the meantime in the
‘80s, like model checking or abstract interpretation. The field progressed slowly
from the academic side, but you're right that even now it's still a niche. Many
applications don't want to do or think they don't need for more methods. The
niche in question is very important and | think it's slowly growing. Typically, it's
life critical software in transportation like fly-by-wire airplanes or other less
metros all in Paris and are verified. Well, the clinical functionalities have been
formally verified. Controlling nuclear plants or chemical plants that can also be
important or big infrastructures like the electrical grid.

As you say, verification is finding its way into a few more niches like security. |
don't know if you know that or our audience knows that, but the cryptographic
libraries they used by Chrome and by Firefox, which actually have been formally
verified, one at MIT and the other at Microsoft Research. This is finding its way
into very popular tools, but only for the most very tricky pieces of code. Okay.
Well, there's a lot of work lately at Amazon AWS where using formal methods
for more security, for other cloud infrastructure. Where there are some
infrastructure software that is slowly being verified. Not many, but where you
mentioned my Concert-C compiler, that's an example of a fairly widely usable
piece of infrastructure that is formally verified. It gives a little more guarantees
about the correctness of the generated code.

There has been this SCL-IV [inaudible 00:13:06] that's been verified in Australia,
which is also quite an achievement. It's not a full operating system, but it's really
the core security features of an OS. You can do a supervisor pretty easily using
their code. These are some examples | think of an important niches where
formal verification has found a place. Where would wider usage? Well, of
course there are a cost to using formal methods. It takes more time. It takes
time to do the formal verification. You need to hire people or train people into
using it, which is not that easy. You need to select the right tools, et cetera. On
the other hand, you also save some time debugging and testing. When | did this
Compserve verified compiler, | was very relieved that | did not have to spend
much time debugging the output. Debugging a compiler is-

| vaguely remember.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 4 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Xavier Leroy: | think the main difficulty is that there's a prerequisite for four methods. You
need mathematical specifications it. Okay? Otherwise, you don't know what to
verify against.

There are application areas where you have extremely precise specifications.
Cryptography, for instance, all the math are written and standardized. Control
common code like this fly-by-wire system, these are all partial differential
equations. The math is there. Databases have also pretty neat, pretty clean
mathematical specifications and et cetera. In many applications there's many
areas. There's just no kind of mathematical specification like a website or
artificial intelligence applications. What is a good tool to classify a correct
classification of your photos? A correct answer by Chat-GPD. Okay. This is not
mathematically well defined. To me, this is the ultimate frontier. What | would
really like everyone to do is try to think of formal specifications for their
problems. Even if they don't do full formal verification, there's a lot you can do
when you have a spec.

You can do random testing, you can do all kinds of runtime verification to find
undefined behaviors, etc. You can do static analysis that will show some
correctness guarantees, but not all. That would be much more lightweight than
a full formal verification. Now we need to think in terms of formal specifications,
not so much in terms of formal methods.

Carl Stalling: Well, you speak to my heart. My day job, I'm a product owner and | write
specifications all day long.

Xavier Leroy: Excellent.

Carl Stalling: I'm afraid it's more on the story and gyro ticket side, than formal specifications, |
would imagine, or | would like to think, that part of my effectiveness derives
from the fact that | have a formal methods background that makes it clear in
writing.

You made an interesting point there about Al. Of course, Al is the big topic
today, right? Everybody's talking about Al. It's the big news. Many people have
gone as far as to say programming, as we know it, will disappear because the co-
pilots are so good now, they provide you with lots of code. | must say, | tried
that out and unfortunately | wasn't able to get Chat-GPT to write a CamL code
for me. It happily wrote code in Python of course, and Java, but no way it would
write CamL or Prologue or any of these exotic languages. | guess that makes it
an equal teaching tool because students can't cheat, because they have to write
the code themselves.

Xavier Leroy: Yeah, | don't know if that's a benefit or disadvantage for them.

Yeah. You are right that those co-pilot generators are very dependent on the
training data where they have a lot of training data, Python and Java and

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 5 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

JavaScript. There's a lot less with CamL and other niche languages. Actually
that's an interesting point because those systems are really very good at
synthesizing code examples that they've already seen. You see that, for
instance, on evaluations, if you give them problems from programming contests
and so on. When solutions have been published, they will give some pretty good
solutions. Then if you give them the latest edition of the contest, those solutions
have not been published yet, they do pretty badly. They are really synthesizing
existing knowledge more than synthesizing programs for specifications. Then
sometimes the result is quite good and sometimes it's completely wrong. It's
not even syntactically correct. Okay. That's easy to check. The part that makes
me nervous is when the result is slightly wrong.

Carl Stalling: Just slightly wrong, right?

Xavier Leroy: Absolutely. Well, there was an example from | think the human evaluation
where one of the ChatGPTs produced a Python code that looked good that
passed the four or five tests that were part of the specification. If you looked at
it very closely and tested it on other inputs, you saw that it was incorrect and it
was fairly subtle. The first four lines were perfect. They were doing exactly the
right thing, which was to compute some lists in sorted order without
repetitions. Okay. Very good. Then the fifth line was destroying the result by
applying a Python trick ... that well-known trick, you go to sets and then take to
lists that eliminates duplicates, but can change the order, so the result is not
necessarily sorted. That doesn't happen very often, but it happens. That's a
Python idiosyncrasy. If you have the same code in OCaml, the fifth line would
produce a correct result. It would be useless, but it would produce a correct
result. When you convert from a set to a list in OCaml, it's always sorted.

That got me thinking. Yeah. This is good looking code, but it's harder to review
than if it were written by a human. Humans generally don't add bad code after
the good code. They just produce bad code. It's harder to review for a human,
and it still needs testing, obviously, or some other kind of validation. My feeling
is that Copilot and other things, they're automating the pleasant part of
software development, which is writing code, running small functions given a
specification area. If you're competent and it's rather pleasant and not a big
deal. What is difficult is, first of all, architecting the whole system. | don't think
that GPT or Copilot is of any use there. Then validating, reviewing code, running
test suites and so on. Really, | would prefer Copilot to write test suites for
instance, or do some of the reviews for me. | don't want to give up on
programming. | would like help with other tasks. Really, I'm not quite sure what
to do with those Al generated pieces of software, especially in high assurance
applications of the kind we mentioned earlier.

Carl Stalling: Yeah. | definitely don't want to have a high assurance piece of code written by
GenAl for sure.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 6 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Xavier Leroy:

Carl Stalling:

Xavier Leroy:

There may be a good way to use those systems, which is, think of a
mathematical proof. Okay. If you asked ChatGPT to proof some mathematical
statement, you will get a proof in English that we need to be reviewed. Let's
assume the Al learns an actual interactive theorem prover where you can write
formal proof that can be checked posteriorly. Then where the Al can try to
produce a proof and then if it passes a checker, it's a good proof; if it doesn't
pass the checker, you ask for a new proof. Something similar could happen with
software. If you produce a software plus all sorts of assertions, for instance,
enough logical assertions that the program prover can verify it, then you're
good. | think there's some interesting things to do in this direction. It's just that
it will be very hard because, again, training data ... assertions or programs or
mechanized proofs, training data is pretty scarce and there's no wahoo effect
that you get with is just synthesizing code. Hopefully we'll have to wait for a
while before getting that.

Yeah, it certainly doesn't sound like low-hanging fruit that we just have to reach
out and grab for.

ACM Bytecast is available on Apple Podcasts, Pod Beans, Spotify, Stitcher, and
Tune In. If you're enjoying this episode, please subscribe and leave us a review
on your favorite platform.

Another topic that | would like to cover with you, since | think this is the first
time on ACM's podcast that we have a French interviewee and a German
interviewer on this thing. I'm not sure whether you're aware, but the ACM has
been trying to become a more global or international organization over the past
15 years and a lot more diverse than they used to be, like 30 years ago or so.
I'm, of course, part of that. | wonder whether you have any idea as to how we
could promote the diversity or the globality of the reach of ACM out of this little
corner where a lot of ACM sits, but they definitely want to go out there. Do you
have any idea of how we could spread this into Europe, to Asia, Africa, the
whole world?

I'm not sure. Viewed from my perspective, | think ACM is doing pretty well. My
perspective being mostly conferences and journals and the more academic part
of ACM. | think they're doing pretty well at opening all that to Europeans. In my
area, programming languages, research, there's a lot of research in Europe and
things like conferences, for instance, alternate between the US and Canada,
between North America and Europe. | think we feel pretty much recognized by
ACM as academics. I'm not sure this is case for Asia, for instance. There's
probably more to be done to connect with Japan and South Korea, which has
pretty good research, at least in that area. China is closed anyway or closing
anyway, so that's yet another issue. You are right that there's also more to ACM
than just conferences and journals. I'm not quite sure actually what ... so | know
there are some initiatives towards reaching out to our students, for instance,
our potential students in CS. Maybe we could have more of that in Europe or
more of that in Asia.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 7 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

Carl Stalling:

Xavier Leroy:

It's true that | don't think any of my students have ever heard about ACM,
except as a conference organizer basically and publishing house. What could be
done? I'm not quite sure. No, I'll take that back. Well, there's the planning
competitions which have ... well, there's a southern European one and a
Northern European one. Those don't reach many students, but they reach a
few. Perhaps more of that could be done and some mentoring sessions, some
conferences, but still pretty good. Not quite sure what we could do specifically
for Europe.

| have another difficult question for you, and that is my own career oscillated
between academia and industry as | went back and forth a couple of times. |
can't see that really benefited [inaudible 00:24:55] much, but it was an
interesting ride, let's say. My feeling is that there is very little ties between the
academic world and the industry world. We have been speaking about formal
methods and how they are not very commonly employed in day-to-day
operations and industry. That's certainly a fact. Probably for many problems it's
not the right tool.

| wonder whether there's not more opportunity to interact and to transfer on
the one hand ideas and results from academia and on the other hand, problems
from industry. We have plenty of interesting problems in industry and | have a
feeling that there are so many contributions in academia that just get lost that
would need some application. | sense a gap between these two camps. This
always bothered me tremendously, and I've tried what | can to close that gap or
to bridge it. | wonder, from the academic perspective that you represent here,
what we could do to get closer together, academia and industry?

Well, I think I've had some good contacts with some industries. The point |
would like to make first that where the computing industry is wide. The web
shop or a company that makes mostly end-to-end software, ERPs and the like,
probably doesn't have much contacts with academia. That much is true in my
experience. Some other companies like Wherefore, Critical Embedded Systems,
like | mentioned, or even some of the cryptocurrency and blockchain industries
that popped out of nowhere recently. | have a lot more contacts with academia.
There's also other industries that are not primarily computing industries, but
they're also pretty demanding, like airplane manufacturers, for instance.

Airbus is a really big name in high assurance software, and they have lots of
academic contacts in France and in Germany. What I'm trying to say is that | feel
that I've had good contacts with some industrial users. | think about half of my
PhD students went to industry, but I'm including also more research-oriented
industries, or we mentioned Amazon AWS for instance, or Microsoft or Google,
et cetera. We still have some contacts with them and indeed there are some
good research issues that resolve problems that promote of them. What could
we do to go further than that? It's a good question, where | think our students
really deserve and ask for industrial internships throughout their curriculum.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 8 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

That's a very good opportunity to get to know what's going on in the industry. |
would like industry, at least in France, to hire more students with a PhD.

Carl Stalling: | can certainly empathize with that.

Xavier Leroy: The system masters is optimal for going to work in industry. PhD, they tend to
say, no, you are too educated. You should stay in academia and so on. | think it's
a big loss. | feel that in Germany it's a little better. The PhD is more recognized
by industries and that's great. It's also important to have personal contacts
within an industrial group, especially in big companies. Sometimes they have a
couple of persons whose work title is academic relations, and usually those
people are far off from the actual production groups and the actual groups
where the real problems occur. Sometimes it can be hard to talk through them
and hear the real problems they may be having.

Using from students or other personal contacts, you can get in touch with the
actual R&D groups. Then it becomes a lot more interesting because they really
love to talk about their problems and they have lots of interesting stories to tell.
Yeah. | think there's maybe a little bit of a barrier to cost to just establish those
kinds of contacts. | think there are some demands on both sides, the academics
like me and the industrial people.

Carl Stalling: It's basically a call to improve networking between the two camps.

Xavier Leroy: Absolutely. Yeah, that's true. Maybe we need more opportunities to do that.
Living in Paris, | get lots of email from networking events in the Paris area, but
it's true that most often | don't go, because I'm not quite sure there's something
relevant for me there. Maybe | should try harder.

Carl Stalling: Well, I would be very happy to invite you to the next networking event, if that
should happen in Paris, but that's probably not good for me. Anyway, one last
question, and you kind of steered toward that all by yourself. That is, whether
you would have any advice for students as they make the decision of what topic
to study, what field to pursue, or maybe when they're already in CS and wonder
where to go. You made a negative advice earlier by saying, don't do a PhD if you
want to get employed in industry.

Xavier Leroy: Let me quantify that. You can do a PhD if you want to be higher in the industry.
It's just that it will not really be taken into account. You will get the same salary
and the same career, most of the time as if you stopped at the Master's level.
You will still have learned things in a PhD. Yeah, well, | guess kind of connects
with some advice | can give. Whether to choose computer science or some
other big ... | think it's kind of a personal choice. For me, well, | was exposed to a
bit of computer programming early. It was fascinating, but also frustrating.
Actually, | studied mathematics and physics initially and switched to computer
science quite late, after getting my first theoretical computer science courses.
That was absolutely fascinating. I've always been mathematically inclined.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 9 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

This transcript was exported on Aug 12, 2024 - view latest version here.

What | like in computing is that it's also experimental. You can do concrete
things with a computer, you can experiment. There's a practice that is informed
by the theory and that is wonderful. | think if you are mathematically inclined,
computing is also something to be considered. On the other hand, if you're
packing and tinkering with computers and so on, maybe computer science will
teach you the basics, the fundamentals. | think it's important. When | was
tinkering with my Apple Il in Basic, | didn't go very far because | had no guiding
principles. | just had a few magazines with a sample of code that | was trying to
imitate. CS will also give a good culture, and CS will also give you a lot more
assurance and confidence in what you can do as a computer professional.

Now, if you've already into computing, | think we are living in a good time where
there's a lot of opportunities for learning. Learning during the university in a CS
degree, of course, but there's also learning by yourself. There's lots of online
courses, tutorials. Wikipedia is a pretty good starting point for many questions.
Stack Overflow discussions can take you pretty far, and there's huge amounts of
good code that you can read and learn from. In my time that was less true, but |
remember learning a lot. First | basically learned how to program in C by reading
some very good soft code written like the E-Mac's source code, which was very
interesting and quite comprehensive. There was an interest in some specific
data structure, some systems code, et cetera. It was really interesting. The early
Linux kernel, which was a thing of beauty. Where now it's a little too big, | guess,
for discovery. Back in the, it was pretty small and really illuminating.

Yeah. Reading source code, maybe also participating in open source projects.
Well, that's a good way to give back to the community, but there's also a good
way to learn how it works, how to interact with other developers, how to do
code reviews, how to do work with pull requests and so on. | think this is also a
very formative experience. There's many ways to train yourself continuously as
a computer professional, and this is just great.

Carl Stalling: Well, thank you so much for these thoughts of yours and for sharing them with
us. It was fantastic talking to you. We covered so many topics, and | would like
to go on for hours and hours, but unfortunately we can't. I'll wrap it here and
say thank you [foreign language 00:33:51] and goodbye.

Xavier Leroy: Thank you.

Carl Stalling: ACM ByteCast is a production of the association for Computing Machinery's
Practitioner Board. To learn more about ACM and its activities, visit ACM.org.
For more information about this and other episodes, please visit our website at
learning.acm.org/bytecast. That's learning.acm.org/ByteCast.

ACM Bytecast Ep 57 Xavier Leroy FULL AUDIO mix (Completed 08/12/24) Page 10 of
Transcript by Rev.com 10

https://www.rev.com/account/files
https://www.rev.com/

