

Condos and Clouds
Patterns in SaaS Applications

Thinking about Cloud Computing
by Looking at Condominiums

Extended Version: Jan 2012

1

 Presenter Moderator
 Pat Helland Yannis Ioannidis
 Salesforce.com University of Athens

2

• 1,300+ trusted technical books and videos by leading
publishers including O’Reilly, Morgan Kaufmann, others

• Online courses with assessments and certification-track
mentoring, member discounts at partner institutions

• Learning Webinars on big topics (Cloud Computing/Mobile
Development, Cybersecurity, Big Data, Recommender Systems)

• ACM Tech Packs on big current computing topics: Annotated
Bibliographies compiled by subject experts

• Learning Paths (accessible entry points into popular languages)

• Popular video tutorials/keynotes from ACM Digital Library,
Podcasts with industry leaders/award winners

ACM Learning Center
http://learning.acm.org

http://learning.acm.org/

Outline

• Introduction

• Patterns in SaaS Applications: the Front-End

• Patterns in SaaS Applications: the Back-End

 and Decision Support

• Multi-Tenancy: Making It Work

• Conclusion

3

I Live in a Condo…

• Not everyone wants to live in a condo
– Not good for kids playing in the backyard, dogs running in the backyard,

working on cabinetry in your garage, or having a garden
• But it has its advantages!

– Common heating/air-conditioning “just works”
– Infinite supply of hot water for long showers
– Someone else takes the trash out “to the street”
– It comes with a building engineer who fixes most things!

4

Our home (until about a year ago)!
Great view…. But my ears popped going home!

Sometimes, It’s Really Nice to Outsource a Bunch of Hassles

In Exchange, You Live with Some Constraints

Constraints and Concierge Services in Buildings

Constraints and Concierge Services

5

Building Type Services Constraints

Housing • Reservations
• Package/Dry-Cleaning
• Shared Exercise & Pool
• Shared Engineering

• Limits on Parking, Noise,
Pets, & BBQing

• No Garage Projects
• No Gardening Projects

Office • Shared Bathrooms
• Shared Lobby
• Shared Copiers/Coffee (?)
• Shared Engineering

• Fixed Office Layout
• No Sleeping at Work
• (Typically) No Pets
• (Maybe) Dress Code

Retail Mall • Shared Engineering
• Shared Parking
• Shared Common Space
• Shared Security

• Common Mall Hours
• Only Retail Activities
• Probably Constraints on

 the Type of Retail

5

What Are the Constraints and Concierge Services in Cloud Computing?
What Can the Shared Infrastructure Do to Make Life Better for a Sharing App?

What Constraints Must a Sharing App Live within to Fit into the Shared Cloud?

What Is Cloud Computing?

• Cloud Computing: Apps delivered as
services over the Internet/Intranet
– Saas: Software as a Service:

App software delivered over the Net
– Utility Computing:

Virtualized hardware and computing
delivered over the Net

6

Cloud Computing Allows Deploying Software as a Service
– and Scaling on Demand –

without Building or Provisioning a Datacenter

See: Above the Clouds: a
Berkeley View of Cloud
Computing, Feb 2009

Three New Aspects to Cloud Computing

The Illusion of Infinite Computing Resources Available on Demand

The Elimination of Upfront Commitment by Cloud Users

The Ability to Pay for Use of Computing Resources on a Short-Term Basis

The Forces Driving Us to the Cloud

7

Shared
Data

Common “Big-Data” Store
• Analyze Anything-to-Anything for “What-If?”
• Value of Serendipitous Discovery Grows with Data Size
• Store ALL of an Enterprise’s Data in a Common Store
• Store the Data, Allow Analysis, and See Surprising Value

Datacenter
Economics

Utility Computing
• Large Datacenters Are

Very Expensive
• Sharing Reduces Costs
• Chip Foundry Outsource

Efficiencies of Size
• Electricity where Cheap
• Network on Main Lines
• Containerized Servers
• Shared Standard Admin

Shared
Resources

Higher Utilization
• Shared Usage of

Computation & Storage
• Do Low Priority Work

During Slack Times

Stronger SLAs
• High Priority Work Can

Preempt Low Priority
• Fluid and Fungible

Resource Usage

Front-End, Back-End, and Decision-Support
• Front-End Online processing

– User-facing services called
by web-service or HTML

– SLAs typically less than 500ms
• Back-End processing

– Consumes crawled data, partner
feeds, and logged information

– Generates “reference” data for
front-end computing

• Decision-Support
– Ad-hoc and planned analysis of

the datasets contained in the
back-end

• Integrated processing
– Unclear distinction between

back-end processing and
decision-support computation

8

SaaS Computing & Storage
Front-End

Online
Web-Serving

Back-End
Data Analysis

Crawling

Internet

Data Feeds

User & System Data

Reference
Data for
Online

Results

Large Read-
Only and/or
Updateable

Datasets

Outline

• Introduction

• Patterns in SaaS Applications: the Front-End

• Patterns in SaaS Applications: the Back-End

 and Decision Support

• Multi-Tenancy: Making It Work

• Conclusion

9

6

4

Many Service Apps Fit a Pattern
• Many Service applications follow this pattern:

– Requests come in from the web to a service
– You optionally fetch state associated with this session
– The app may or may not invoke other services
– The app may access a data cache populated from feeds/back-end processing
– A response is sent back to the user

10

Session State
Manager

Service

Request
1

Session
State

2 3

5

Backend
Feed

Processing

7
Application
Data Cache

 Response 8

Other
Service

This Pattern Allows for the
Outsourcing of Many Hassles

A Lot Like Living in a Condo
with a Building Engineer…

Concierge Services for the Front-End

11

Auto-Scaling As the workload rises, additional servers are automatically
allocated for this service. Resources taken back when load drops.

Auto-Placement Deployment, migration, fault boundaries, and geographic
transparency are all included. Applications are blissfully ignorant.

Capacity
Planning

Analysis of traffic patterns of service usage back to incoming user
work load. Trends in incoming user workload are tracked.

Resource
Marketplace

Plumbing tracks a service’s cost as it directly consumes resources
and indirectly consumes them (by calling other services).

A/B-Testing and
Experimentation

Plumbing makes it easy to deploy a service on a subset of the
traffic and compare the results with the previous version.

Auto-Caching /
Data Distribution

Data is fed into a datastore and processed there. This processed
data is cached for easy access by services.

Session State
Management

User session information is captured before a service completes.
The next request easily fetches the state to use.

Stateless Request
Processing

• Incoming requests are routed to one
of the copies of the service
– On arrival, there is no state (or memory)

 associated with the session
– At this point, we consider the service to be stateless (it may get state later)

• The plumbing keeps a pool of servers capable of implementing the service
– Incoming requests are dynamically routed to these services
– The plumbing will dynamically

increase and decrease
the number of servers
implementing this
service as needed

12

Session State
Manager

Service
Request

Session
State

Backend
Feed

Processing

Application
Data Cache

 Response

Other
Service

Service
“A”

 Service
“A”

 Service
“A”

 Service
“A”

 Service
“A”

Request

Response
Load

Balancing

Composite Request
Processing

• Frequently, a service calls other
services to get its job done
– These may or may not grab session state from the session state manager

• The composite call graph may get complex
– Sometimes there will be cycles

• The service must know when to break the cycle
– Sometimes the depth of the call graph may get very deep

• All of these service calls will need to complete to build the user response
– The work fans out, processes, and fans back

13

Session State
Manager

Service
Request

Session
State

Backend
Feed

Processing

Application
Data Cache

 Response

Other
Service

Request

Response

Other
Service Service

Other
Service

Other
Service

Other
Service

Other
Service

Other
Service

Other
Service

Other
Service

Other
Service

Other
Service

• System-wide SLAs need tight component SLAs
– Multi-level call graph in service structure

• Example SLA:
– 300ms response for 99.9% of requests

with 500 requests per sec
• Cross-service dependencies

– Force tight SLA responses
• Average versus Percentile

– Average not strict enough
– User experience unacceptable

SLAs and Request Depth

14

Re
qu

es
t

Re
sp

on
se

SLA: Service Level Agreement
Does the “Service” Provide the
Level of Service It Promised?

Is the Response
Fast Enough?

Lots of Pressure on Services at the Bottom of the Stack!

You Need to Answer Fast and Predictably!

How Are You Going to Provide a Tight SLA?

Short Minimum Response Time?

Really Low Utilization?

Both?...

Re
qu

es
t

Re
sp

on
se

 Pounding on the Services at the Bottom
• The Deeper the Call Stack, the Tighter the SLA

– It’s Time Is Factored in the Caller’s SLA
• Consider Session-State Manager and Auto-Cache Manager

– They get called a lot
– They get called from services already deep in the stack!

15

Deeper the Call Stack  More Pressure

Can Result in Needing to
Sacrifice Utilization!

Automatic Provisioning to Meet SLAs
• The plumbing can know the desired SLA for each service it manages

– End-user facing services can have their SLAs configured to the plumbing
– Plumbing can know which services call which other services

• This can be determined dynamically by watching the interactions
– Based on the demands of the calling services, a desired SLA can be calculated

• Within limits, the SLA for a service can be met by increasing the number of

servers and, hence, decreasing the utilization of the server pool
– The plumbing can dynamically increase the server pool to meet the SLA

16

It Is Unlikely that SLA Goals Can Be Fully Automated
When a Calling Service Calls Many Different Dependent Services,

What Is the Relationship across Their SLAs?

This Technique Is Useful Sometimes but Not for Everything
The Minimum Response Time for the Service Must Be Acceptably

Close to the Desired SLA for the Service

Accessing Data
and State

• When a request lands into a service, it initially has no state other than
what arrives with the request
– It can fetch session state
– It can fetch cached data for some application specific data item based on key

• Session state: fetched from the session state manager using a session key
– When changes are made, they are stored back to the session state manager

• Cached data: fetched from the cache manager with domain name and key
– Used to store data which is derived from feeds
– This application (service) specific data is read-only by the service

17

Session State
Manager

Service
Request

Session
State

Backend
Feed

Processing

Application
Data Cache

 Response

Other
Service

• The Session State is keyed by the
session-id
– The session-id comes in on the request
– When the service calls the session-state-manager, a blob of state is returned

• The plumbing manages scaling the session state
– The session state manager will expand as necessary when the number of

sessions grows
• The plumbing manages the durability of the session state

– It is essential that the state usually survives system failures
– We should consider schemes which rarely lose updates and gain performance

• The plumbing must give excellent responsiveness

Typical Requirement: 5 ms Response 99.9% of the Time
in a First-Class Implementation of the Session State Manager

Managing Scalable
and Reliable State

18

Session State
Manager

Service
Request

Session
State

Backend
Feed

Processing

Application
Data Cache

 Response

Other
Service

Automatic Services,
State, and Data

• Applications using the plumbing worry
about their business code
– They have session state, application data cache, and calls to other services
– They simply implement their own business logic, not system issues

• These applications build their apps in two pieces:
– Back-end feed/crawl processing:

• Data from feeds and crawls is batch processed to make cache entries
– Front-end web-serving:

• Services awaken, (optionally) fetch session state, access cache, call other
services, calculate their business logic, and return responses

19

The Plumbing Prescribes HOW to Access These Services
Session State, Cache, and Service Calls Are Done with Special Interfaces

Constrained Application Functionality So the Plumbing Can Provide the Support

Session State
Manager

Service
Request

Session
State

Backend
Feed

Processing

Application
Data Cache

 Response

Other
Service

Applying Changes to the Back-End
• Sometimes request actually “do-work” and apply application changes

– For example, pushing “Submit” while shopping at Amazon.com
• Application changes may be synchronous or asynchronous

– Synchronous: the human waits while the back-end gets work done and answers
– Asynchronous: the work is enqueued and processed later

• Amazon sends an email when the work is completed

20

SaaS Computing & Storage
Back-End

Crawling

Internet

Data Feeds

User & System Data

Front-End

Results
Back-End
Datasets

Service

State

Ref Data for Online

Back-End
Application

Outline

• Introduction

• Patterns in SaaS Applications: the Front-End

• Patterns in SaaS Applications: the Back-End

 and Decision Support

• Multi-Tenancy: Making It Work

• Conclusion

21

Feeds, Crawling, and Logging
• The Back-End receives data from many sources:

– Crawling: sometimes the back-end has applications which look out at the
Internet or other systems to see what can be extracted

– Data Feeds: Partner companies or departments may send data to be
ingested into the back-end system

– Logging: Data is accumulated about the behavior of the front-end system.
These logs are submitted for analysis by the back-end system

22

SaaS Computing & Storage
Front-End

Online
Web-Serving

Back-End
Data Analysis

Crawling

Internet

Data Feeds

User & System Data

Reference
Data for
Online

Results

Large Read-
Only and/or
Updateable

Datasets

Back-End: Applying Online Work
• Sometimes request actually “do-work” and apply application changes

– For example, pushing “Submit” while shopping at Amazon.com
• Application changes may be synchronous or asynchronous

– Synchronous: the human waits while the back-end gets work done and answers
– Asynchronous: the work is enqueued and processed later

• Amazon sends an email when the work is completed

23

SaaS Computing & Storage
Back-End

Crawling

Internet

Data Feeds

User & System Data

Front-End

Results
Back-End
Datasets

Service

State

Ref Data for Online

Back-End
Application

Generating Reference Data for the Front-End
• Many front-end applications use reference-data

– Reference data is periodically updated by the back-end
– Applications are designed to deal with reference data that may be stale

• Example uses of reference data:
– Product catalog & price lists: Online retailing like Amazon.com uses this
– Search indices for Google, Bing, or enterprise-specific search
– Maps, insurance rates, ICD9 codes (medical diagnostic codes), and much more

24

SaaS Computing & Storage
Front-End

Online
Web-Serving

Back-End
Data Analysis

Crawling

Internet

Data Feeds

User & System Data

Reference
Data for
Online

Results

Large Read-
Only and/or
Updateable

Datasets

Data Publication and Updates
• The general model for data is:

– 1) Backend processing receives data from the web by feeds or by crawling
– 2) Application code on the backend munches the data making entries to serve
– 3) The entries for serving are stuffed into caches
– 4) The web serving application accesses the caches of data

25

Scalable and
Distributed Cache

Lots of Data
Spread over Lots

of Computers

Automatic
Pub-Sub

Distribution

Super-Fresh
Updates

New Batch or
Incremental

Versions

Stateless
Service

Service Session
State

This Was Stateless
Until It Fetched

the State

Incoming
Data from
Feeds and

Crawl Crawl
the Web

Feeds from
Partners

App Specific
Batch or Event

Processing

Focusing on the Scalable & Distributed Cache
• Let’s zoom in on the reference-data cache stuffed by the back-end and

used by the front-end

26

Stateless
Service

Service Session
State

Automatic
Pub-Sub

Distribution

Incoming
Data from
Feeds and

Crawl Crawl
the Web

Scalable and
Distributed Cache

Lots of Data
Spread over Lots

of Computers

App Specific
Batch or Event

Processing

Super-Fresh
Updates

New Batch or
Incremental

Versions
Feeds from

Partners

This Was Stateless
Until It Fetched

the State

Partitioning and Replication of
Reference Data

• Caches for reference data scale in two ways:
– Partitioning: the data size may need to scale and the partitioning increases
– Replication: the requests rate may increase and you need more processing

27

A-E F-J K-O P-T U-Z

A-E F-J K-O P-T U-Z

A-E F-J K-O P-T U-Z

A-E F-J K-O P-T U-Z

The More
Replicas of Each
Data Partition,

the More Traffic
You Can Serve

Plumbing the Caches for
Reference Data

28

A-E

A-E

A-E

A-E

F-J

F-J

F-J

F-J

K-O

K-O

K-O

K-O

P-T

P-T

P-T

P-T

U-Z

U-Z

U-Z

U-Z

Incoming
Requests

Automatic
Pub-Sub

Distribution

Backend
Processing

(Feed &
Crawl)

Feeds from
Partners

Crawl
the Web

Plumbing Provides:
Easy to Program

Backend Processing of
Feeds/Crawls

Automatic
Distribution

Auto-Data Partitioning
for Scale

Auto-Replication for
Request Scale

User & System Data

Back-End

SaaS Computing & Storage
Front-End

Results
Back-End
Datasets Ref Data

Servic
e

State

Back-End
App

Crawling

Internet

Data Feeds

User & System Logging

Styles of Back-End Processing (1)
• Back-end input:

– Crawling, Data Feeds, User & System Logging, and Front-end Calls
• Back-end output:

– Reference Data Caches, Front-end Responses, Analysis Results, and Output
Data Feeds to Others

29

Implementation Styles

Relational DB &
Normal App

“Big-Data” & Parallel
Batch

“Big-Data” &
Event Pub-Sub

Implementation Styles

Relational DB +
Normal App

Application may be:
• DB Trigger: Running in the DB
• N-Tier: Running using VMs
• Other App: Running using VMs

 Advantages of Relational… Only scales to a Single DB

Relational Data
Replicated to “Big-

Data” Store

“Big-Data” &
Parallel Batch

Set-Oriented Massively Parallel Batch Processing
• Effectively no limits on the amount of data processed
• Declarative high-level language (easy for analysts)
• Can produce reference data or for BI Analytics

MapReduce/Hadoop over All the Enterprise’s Data

Styles of Back-End Processing (2)

30

“Big-Data” +
Event Pub-Sub

Incoming Work Processed within Seconds
• Incoming events enqueued for pub-sub distribution
• Application code processes each subscription event
• Massively parallel transactional record updates

Rapid Processing of Events into Fresh Reference Data

Concierge Services for the Back-End

31

“Big-Data” Unified
Data Access

Unified enterprise-wide (and controlled cross-enterprise) data.
Anything may be processed with anything (if authorized).

Relational DB for
Silos/Services

 Relational DBs supporting enterprise apps which work as silos
or services. ETL to stage data into the “Big-Data” store.

Fault Tolerant &
Scalable Storage

Cloud managed storage for both “Big-Data” and relational.
Automatic intra-datacenter and cross-datacenter replication.

Massively Parallel
Batch & Event

High-level set-oriented operations. Incoming events call
pub-sub style apps which transactionally update “Big-Data”.

Automatic Scalable
Ref-Data Caching

The Back-End supplies the Front-End with dynamically updated
application specific data. Automated high-performance caching.

Multi-Tenanted
Access Control

Intra (and inter) enterprise access control to data contained in
the “Big-Data” store and the relational store

Prioritized SLA
Driven Resources

Relational DBs, Batch, and Events compete for the same stuff.
Work is given its SLAs and priorities. Tradeoffs are automated.

Outline

• Introduction

• Patterns in SaaS Applications: the Front-End

• Patterns in SaaS Applications: the Back-End

 and Decision Support

• Multi-Tenancy: Making It Work

• Conclusion

32

Landlords, Management Staff, Keys, and Privacy

• In rented apartments, owned condos, or rented houses, the landlord or
engineering staff typically have a key to your home
– There are well established reasons they may enter
– They can (possibly) get into a world of shit

if they come in for other reasons…
• Renting or leasing a property (home, office, retail, or light manufacturing)

implies a bidirectional trust relationship
– Tenants will follow the rules, pay the rent, not trash the property, and not bug

the neighbors
– Landlords will grant access to the property, keep the services running, and

respect the privacy of the tenants
• Landlord/Tenant laws and rules took years to establish

– They are even more complex in condominiums with shared ownership
– There are different laws and expectations for different usage patterns

(e.g. housing, retail, office, …)

33

Public, Private, Sharing, and Trust
• Public Clouds:

– Multi-tenancy across companies (typically at the granularity of files and VMs)
• Some, like Salesforce.com offer finer grain sharing of records in a DB

– The cloud user must trust the cloud provider with its confidential data
– Precious few laws and conventions around when this is legal and proper

• Private Clouds:
– On premises at the enterprise; sharing within the enterprise
– Far fewer legal challenges
– Harder for the enterprise to gain the value of scale

• Hybrid Enterprise Deployments:
– Some applications at the IT-Shop’s datacenter
– Some applications in the public cloud
– Need to work to ensure its OK to trust the public cloud and to make EAI work

• Semi-Private Clouds:
– Coarse-grained allocation of computing resources (e.g. a rack of servers)
– Leverage the public cloud’s datacenter efficiencies with simple and verifiable

allocation of resources to the IT department to run its private cloud

34

Outline

• Introduction

• Patterns in SaaS Applications: the Front-End

• Patterns in SaaS Applications: the Back-End

 and Decision Support

• Multi-Tenancy: Making It Work

• Conclusion

35

Defining Constraints and Empowerment
• Programming platforms define Application Programming Interfaces (APIs)

– These define their respective models for use and platform support
– Different platforms may have different models for use and support

• Shared buildings have expectations for usage
– They are (typically) built without knowing who will occupy them
– They are built with an expectation of how they will be used

• You are not allowed to live and sleep in a retail store or industrial park

• We need to define the expectations for usage for Platform as a Service

– It is OK for this to address a large class of customers but be useless for others
– We are designing the platform without knowing who will occupy it
– It must offer great “concierge services” with acceptable constraints

 36

Concierge Services for the Front-End

37

Auto-Scaling As the workload rises, additional servers are automatically
allocated for this service. Resources taken back when load drops.

Auto-Placement Deployment, migration, fault boundaries, and geographic
transparency are all included. Applications are blissfully ignorant.

Capacity
Planning

Analysis of traffic patterns of service usage back to incoming user
work load. Trends in incoming user workload are tracked.

Resource
Marketplace

Plumbing tracks a service’s cost as it directly consumes resources
and indirectly consumes them (by calling other services).

A/B-Testing and
Experimentation

Plumbing makes it easy to deploy a service on a subset of the
traffic and compare the results with the previous version.

Auto-Caching /
Data Distribution

Data is fed into a datastore and processed there. This processed
data is cached for easy access by services.

Session State
Management

User session information is captured before a service completes.
The next request easily fetches the state to use.

Concierge Services for the Back-End

38

“Big-Data” Unified
Data Access

Unified enterprise-wide (and controlled cross-enterprise) data.
Anything may be processed with anything (if authorized).

Relational DB for
Silos/Services

 Relational DBs supporting enterprise apps which work as silos
or services. ETL to stage data into the “Big-Data” store.

Fault Tolerant &
Scalable Storage

Cloud managed storage for both “Big-Data” and relational.
Automatic intra-datacenter and cross-datacenter replication.

Massively Parallel
Batch & Event

High-level set-oriented operations. Incoming events call
pub-sub style apps which transactionally update “Big-Data”.

Automatic Scalable
Ref-Data Caching

The Back-End supplies the Front-End with dynamically updated
application specific data. Automated high-performance caching.

Multi-Tenanted
Access Control

Intra (and inter) enterprise access control to data contained in
the “Big-Data” store and the relational store

Prioritized SLA
Driven Resources

Relational DBs, Batch, and Events compete for the same stuff.
Work is given its SLAs and priorities. Tradeoffs are automated.

Condos Impose Constraints
• My brother raises pet chickens for eggs… He doesn’t live in a condo

– My condo doesn’t allow pet chickens.
• Condo buildings are designed with an expectation of their usage pattern

– People living with a certain density, certain lifestyle, and certain restrictions
– Many services are preplanned:

• We have an exercise room, concierge, wine storage, parking, and a lovely
set of rooftop patios for barbequing with nice gas grills and gas fireplaces

• It is the constraints that allow the community to exist
– Shared services, shared building, shared maintenance, and shared expenses
– Condos are based on sharing for reduced costs and increased benefits

• If the constraints aren’t right for you, condo living isn’t right for you
– If you want to raise chickens or horse, listen to crickets

in your backyard, work in a private woodshop,
or repair your own automobiles, this isn’t for you

• If your lifestyle fits the constraints, condo living can be great!
– No lawn to mow, gutters to sweep, or trash to take to the street!

 39

What about “The Forces Driving Us to the Cloud”?

40

Shared
Data

Evolve towards All Data Shared in a “Big Data” Store
• Common, distributed, uniformly addressable data store
• Replicated within and across datacenters for high-availability
• Existing siloed databases replicated into the common store
• Analyze anything-to-anything for “What-If?”
• Massively parallel batch and event processing for back-end apps

Datacenter
Economics

Public Clouds
• Cloud providers: large &

efficient datacenters
• Fine-grained multi-tenant
• Must trust cloud provider

sharing mechanisms

Semi-Private Cloud
• Coarse-grained multi-server

(rack-level) allocation
• VPN between racks
• More contained trust
• Less fluid resource allocation

Shared
Resources

Coarse-Grained Sharing
• VMs and physical servers

offer fungible sharable units
• Existing applications can be

migrated to coarse-sharing

Fine-Grained Sharing
• Front-end services share the

same platform resources
• Back-end batch and event

processing shares resources
• Prioritized SLAs thru sharing

Takeaways
• Shared buildings became successful by constraining and standardizing usage

– Apartments, condos, office, retail, & light manufacturing have constraints
– Not everyone can accept the constraints… if you do, there are efficiencies
– Standardization allows for outsourcing and sharing many aspects of buildings
– Changes in usages patterns, expectations, and the law were required

• Standardization of usage will empower migration of work to the shared cloud
– Lower-level standardization (e.g. VMs) supports more apps but with fewer services
– Higher level “Platform-as-a-Service” is nascent but can offer many advantages

• We must define and constrain usage models for important types of cloud apps
– This will allow us to offer enhanced sharing with important supporting services

• Enterprises can gain tremendously from public and/or private clouds
– Sharing across applications (both front-end and back-end) can increase utilization
– Driving towards fungible resources spurs efficient provisioning and allocation
– Using the cloud clarifies the relationship between biz-apps and IT control/services
– “Concierge-services” empower IT and liberate business applications

 41

42

• Questions about this webinar? learning@acm.org

• ACM Learning Center: http://learning.acm.org

• ACM Tech Pack on Cloud Computing (open to all, complimentary
DL articles for members): http://techpack.acm.org/cloud/

• ACM SIGMOD: http://www.sigmod.org

• ACM SIGMOD Conference: www.sigmod.org/2013/

ACM: The Learning Continues

mailto:learning@acm.org
http://learning.acm.org/
http://techpack.acm.org/cloud/
http://www.sigchi.org/
http://www.sigmod.org/2013/

	��Condos and Clouds�Patterns in SaaS Applications��Thinking about Cloud Computing �by Looking at Condominiums
	ACM Learning Center �http://learning.acm.org
	Outline
	I Live in a Condo…
	Constraints and Concierge Services
	What Is Cloud Computing?
	The Forces Driving Us to the Cloud
	Front-End, Back-End, and Decision-Support
	Outline
	Many Service Apps Fit a Pattern
	Concierge Services for the Front-End
	Stateless Request Processing
	Composite Request Processing
	SLAs and Request Depth
	Pounding on the Services at the Bottom
	Automatic Provisioning to Meet SLAs
	Accessing Data �and State
	Managing Scalable and Reliable State
	Automatic Services, State, and Data
	Applying Changes to the Back-End
	Outline
	Feeds, Crawling, and Logging
	Back-End: Applying Online Work
	Generating Reference Data for the Front-End
	Data Publication and Updates
	Focusing on the Scalable & Distributed Cache
	Partitioning and Replication of �Reference Data
	Plumbing the Caches for �Reference Data
	Styles of Back-End Processing (1)
	Styles of Back-End Processing (2)
	Concierge Services for the Back-End
	Outline
	Landlords, Management Staff, Keys, and Privacy
	Public, Private, Sharing, and Trust
	Outline
	Defining Constraints and Empowerment
	Concierge Services for the Front-End
	Concierge Services for the Back-End
	Condos Impose Constraints
	What about “The Forces Driving Us to the Cloud”?
	Takeaways
	ACM: The Learning Continues

