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ACM Learning Center  
(http://learning.acm.org) 

• 1,300+ trusted technical books and videos by leading 
publishers including O’Reilly, Morgan Kaufmann, others 
 

• Online courses with assessments and certification-track 
mentoring, member discounts at partner institutions 
 

• Learning Webinars on big topics (Cloud Computing/Mobile 
Development, Cybersecurity, Big Data) 
 

• ACM Tech Packs on big current computing topics: Annotated 
Bibliographies compiled by subject experts 
 

• Learning Paths (accessible entry points into popular languages) 
 

• Popular video tutorials/keynotes from ACM Digital Library, 
Podcasts with industry leaders/award winners 

http://learning.acm.org/
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Information Retrieval 

• Static content base 
– Invest time in indexing content 

• Dynamic information need 
– Queries presented in “real time” 

 
• Common approach:  TFIDF 

term frequency inverse document frequency 
– Rank documents by term overlap 
– Rank terms by frequency  



 



 



Information Filtering 

• Reverse assumptions from IR 
– Static information need 
– Dynamic content base 

• Invest effort in modeling user need 
– Hand-created “profile” 
– Machine learned profile 
– Feedback/updates 

• Pass new content through filters 
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Collaborative Filtering 

• Premise 
– Information needs more complex than keywords or topics:  

quality and taste 
• Small Community:  Manual 

– Tapestry – database of content & comments 
– Active CF – easy mechanisms for forwarding content to 

relevant readers 
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Automated CF 

• The GroupLens Project (CSCW ’94) 
– ACF for Usenet News 

• users rate items 
• users are correlated with other users 
• personal predictions for unrated items 

– Nearest-Neighbor Approach 
• find people with history of agreement 
• assume stable tastes 



Usenet Interface 



Does it Work? 

• Yes:  The numbers don’t lie! 
– Usenet trial:  rating/prediction correlation 

• rec.humor:  0.62 (personalized) vs. 0.49 (avg.) 
• comp.os.linux.system: 0.55 (pers.) vs. 0.41 (avg.) 
• rec.food.recipes: 0.33 (pers.) vs. 0.05 (avg.) 

– Significantly more accurate than predicting average or modal 
rating. 

– Higher accuracy when partitioned by newsgroup 



It Works Meaningfully Well! 

• Relationship with User Behavior 
– Twice as likely to read 4/5 than 1/2/3 

 
• Users Like GroupLens 

– Some users stayed 12 months after the trial! 
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Amazon.com 

 



 



Recommenders 

• Tools to help identify worthwhile stuff 
– Filtering interfaces 

• E-mail filters, clipping services 
– Recommendation interfaces 

• Suggestion lists, “top-n,” offers and promotions 
– Prediction interfaces 

• Evaluate candidates, predicted ratings 



Historical Challenges 

• Collecting Opinion and Experience Data 
 

• Finding the Relevant Data for a Purpose 
 

• Presenting the Data in a Useful Way 



Recommender Application Space 



Scope of Recommenders 

• Purely Editorial Recommenders 
 

• Content Filtering Recommenders 
 

• Collaborative Filtering Recommenders 
 

• Hybrid Recommenders 



Recommender Application Space 

• Dimensions of Analysis 
– Domain 
– Purpose 
– Whose Opinion 
– Personalization Level 
– Privacy and Trustworthiness 
– Interfaces 
– <Algorithms Inside> 



Domains of Recommendation 

• Content to Commerce 
– News, information, “text” 
– Products, vendors, bundles 



       Google:  Content Example 

 



C H 



Purposes of Recommendation 

• The recommendations themselves 
– Sales 
– Information 

 
• Education of user/customer 

 
• Build a community of users/customers around products or 

content 



     Buy.com customers also bought 



Epinions Sienna overview 

 



OWL Tips 



ReferralWeb 



Whose Opinion? 

• “Experts” 
 

• Ordinary “phoaks” 
 

• People like you 



Wine.com Expert recommendations 



PHOAKS 



Personalization Level 

• Generic 
– Everyone receives same recommendations 

• Demographic 
– Matches a target group 

• Ephemeral 
– Matches current activity 

• Persistent 
– Matches long-term interests 



Lands’ End 

 



Brooks Brothers 

 



Amazon.com 

 



Cdnow album advisor 



CDNow Album advisor recommendations 

 



 



Privacy and Trustworthiness 

• Who knows what about me? 
– Personal information revealed 
– Identity 
– Deniability of preferences 

• Is the recommendation honest? 
– Biases built-in by operator 

• “business rules” 
– Vulnerability to external manipulation 



Interfaces 

• Types of Output 
– Predictions 
– Recommendations 
– Filtering 
– Organic vs. explicit presentation 

• Agent/Discussion Interface Example 

• Types of Input 
– Explicit 
– Implicit 



Wide Range of Algorithms 

• Simple Keyword Vector Matches 
 

• Pure Nearest-Neighbor Collaborative Filtering 
 

• Machine Learning on Content or Ratings 



Collaborative Filtering:   

Techniques and Issues  



Collaborative Filtering Algorithms 

• Non-Personalized Summary Statistics 
• K-Nearest Neighbor 
• Dimensionality Reduction 
• Content + Collaborative Filtering 
• Graph Techniques 
• Clustering 
• Classifier Learning 



Teaming Up to Find Cheap Travel 

• Expedia.com  
– “data it gathers anyway”  

 
– (Mostly) no cost to helper 
– Valuable information that is otherwise hard to acquire 
– Little processing, lots of collaboration 



Expedia Fare Compare #1 



Expedia Fare Compare #2 

 



Zagat Guide Amsterdam Overview 

 



Zagat Guide Detail 

 



Zagat:  Is Non-Personalized Good Enough? 

• What happened to my favorite guide? 
– They let you rate the restaurants! 

 
• What should be done? 

– Personalized guides, from the people who “know good 
restaurants!” 



Collaborative Filtering Algorithms 

• Non-Personalized Summary Statistics 
• K-Nearest Neighbor 

– user-user 
– item-item 

• Dimensionality Reduction 
• Content + Collaborative Filtering 
• Graph Techniques 
• Clustering 
• Classifier Learning 



CF Classic:  K-Nearest Neighbor User-User 

C.F. Engine 

Ratings Correlations 



CF Classic:  Submit Ratings 

C.F. Engine 

Ratings Correlations 

ratings 



CF Classic:  Store Ratings 

C.F. Engine 

Ratings Correlations 

ratings 



CF Classic:  Compute Correlations 

C.F. Engine 

Ratings Correlations 

pairwise corr. 



CF Classic:  Request Recommendations 

C.F. Engine 

Ratings Correlations 

request 



CF Classic:  Identify Neighbors 

C.F. Engine 

Ratings Correlations 

find good … 

Neighborhood 



CF Classic:  Select Items; Predict Ratings 

C.F. Engine 

Ratings Correlations 
Neighborhood 

predictions 
recommendations 
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ML-home 



ML-scifi-search 



ML-clist 



ML-rate 



ML-search 



ML-buddies 



User-User Collaborative Filtering 
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A Challenge:  Sparsity 

• Many E-commerce and content applications have many 
more customers than products 

• Many customers have no relationship 
• Most products have some relationship 



Another challenge:  Synonymy 

– Similar products treated differently 
• Have skim milk?  Want whole milk too? 

– Increases apparent sparsity 
– Results in poor quality 



Item-Item Collaborative Filtering 
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Item Similarities 
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Item-Item Discussion 

• Good quality, in sparse situations 
• Promising for incremental model building 

– Small quality degradation 
• Nature of recommendations changes 

– Big performance gain 



Collaborative Filtering Algorithms 

• Non-Personalized Summary Statistics 
• K-Nearest Neighbor 
• Dimensionality Reduction 

– Singular Value Decomposition 
– Factor Analysis  

• Content + Collaborative Filtering 
• Graph Techniques 
• Clustering 
• Classifier Learning 



Dimensionality Reduction 

• Latent Semantic Indexing 
– Used by the IR community 
– Worked well with the vector space model 
– Used Singular Value Decomposition (SVD) 

• Main Idea 
– Term-document matching in feature space 
– Captures latent association 
– Reduced space is less noisy 



SVD: Mathematical Background 
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SVD for Collaborative Filtering 

 . 2. Direct 
Prediction 
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1. Low dimensional representation  
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Singular Value Decomposition 

Reduce dimensionality of problem 
– Results in small, fast model 
– Richer Neighbor Network 

Incremental Update 
– Folding in 
– Model Update 

Trend 
– Towards use of probabilistic LSI 



Collaborative Filtering Algorithms 

• Non-Personalized Summary Statistics 
• K-Nearest Neighbor 
• Dimensionality Reduction 
• Content + Collaborative Filtering 
• Graph Techniques 

– Horting:  Navigate Similarity Graph 
• Clustering 
• Classifier Learning 

– Rule-Induction Learning 
– Bayesian Belief Networks 



Resources 

• Survey Articles 
– Recommender Systems:  From Algorithms to User Experience 

(2012):  http://www.grouplens.org/node/480 
– Collaborative Filtering Recommender Systems (2011):  

http://www.grouplens.org/node/475  
• Books 

– Recommender Systems:  An Introduction (2010) buy Jannach 
et al.  

– Recommender Systems Handbook (2010) by Ricci et al.  
• Software Tools 

– LensKit – http://lenskit.grouplens.org  
– MyMedia – http://www.mymediaproject.org 
– Mahout – http://mahout.apache.org  

http://www.grouplens.org/node/480
http://www.grouplens.org/node/475
http://lenskit.grouplens.org/
http://www.mymediaproject.org/
http://mahout.apache.org/


ACM: The Learning Continues 

• Questions about this webinar? learning@acm.org 
 
  

• ACM Learning Center: http://learning.acm.org 
  
 

• ACM SIGCHI: http://www.sigchi.org 
 

• ACM Conference on Recommender Systems 
http://recsys.acm.org 

mailto:learning@acm.org
http://learning.acm.org/
http://www.sigchi.org/
http://recsys.acm.org/
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