
NVIDIA TECHNOLOGY
Mark Ebersole

• 1,350+ trusted technical books and videos by leading publishers including O’Reilly, Morgan
Kaufmann, others

• Online courses with assessments and certification-track mentoring, member discounts on tuition
at partner institutions

• Learning Webinars on big topics (Cloud/Mobile Development, Cybersecurity, Big Data,
Recommender Systems, SaaS, Agile, Machine Learning, Natural Language Processing, Parallel
Programming, IPv6, WebGL, Big Data, ICSM)

• ACM Tech Packs on top current computing topics: Annotated Bibliographies compiled by subject
experts

• Popular video tutorials/keynotes from ACM Digital Library, A.M. Turing Centenary talks/panels

• Podcasts with industry leaders/award winners

ACM Learning Center
http://learning.acm.org

2

Talk Back

• Use the Facebook widget in the bottom panel to share
this presentation with friends and colleagues

• Use Twitter widget to Tweet your favorite quotes from
today’s presentation with hashtag #ACMWebinarGPU

• Submit questions and comments via Twitter to
@acmeducation – we’re reading them!

Founded in 1993

Jen-Hsun Huang is co-founder and CEO

Listed with NASDAQ under the symbol
NVDA in 1999

Invented the GPU in 1999;
shipped more than 1 billion to date

FY13: $4.3 billion in revenue

8,500 employees worldwide

6,400 patent assets

Headquartered in Santa Clara, Calif.

My Three Points

1.What is Accelerated Computing?

2.The Why and How of GPUs

3.Resources

Moore’s Law

What makes up the brick wall?

Accelerator CPU

Heterogeneous Computing

Application Code

+

Accelerator CPU
Compute-Intensive Functions

Rest of Sequential
CPU Code

The basic idea

Three Major Accelerators

From Phones to Cars

DIAGNOSTIC IMAGING PERFORMANCE
Real-Time Image Reconstruction with
GPUs.

Only 2% of surgeons will operate on a
beating heart

Patient stands to lose 1 point of IQ
every10 min with heart stopped

GPU enables real-time motion
compensation to virtually stop beating
heart for surgeons

Courtesy Laboratoire d’Informatique de Robotique et de Microelectronique de Montpellier

Operating on a Beating Heart

How do I use GPUs?

What is CUDA?

Programming language?
Compiler?
Classic car?
Beer?
Wine?
Coffee?

CUDA Parallel Computing Platform

 Hardware
 Capabilities

GPUDirect SMX Dynamic Parallelism HyperQ

 Programming
 Approaches

Libraries

“Drop-in” Acceleration

Programming
Languages Directives

Maximum Flexibility Easily Accelerate Apps

 Development
 Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger
NVIDIA Visual Profiler

 Open Compiler
 Tool Chain

Enables compiling new languages to CUDA platform, and
CUDA languages to other architectures

www.nvidia.com/getcuda

Growth of GPU Computing

2008

4,000
Academic Papers

150K
CUDA Downloads

60
University Courses

100M
CUDA –Capable

GPUs

77
Supercomputing

Teraflops

Growth of GPU Computing

2008 2014

4,000
Academic Papers

150K
CUDA Downloads

60
University Courses

100M
CUDA –Capable

GPUs

77
Supercomputing

Teraflops

2.2M
CUDA Downloads

41,700
Supercomputing
Teraflops

738
University
Courses

50,000
Academic Papers

430M
CUDA-Capable
GPUs

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Maximum
Flexibility

Directives

Easily Accelerate
Applications

Top HPC Applications
Molecular
Dynamics

AMBER
CHARMM
DESMOND

GROMACS
LAMMPS
NAMD

Quantum
Chemistry

Abinit
Gaussian

GAMESS
NWChem

Material Science CP2K
QMCPACK

Quantum Espresso
VASP

Weather & Climate
COSMO
GEOS-5
HOMME

CAM-SE
NEMO
NIM
WRF

Lattice QCD Chroma MILC

Plasma Physics GTC GTS

Structural
Mechanics

ANSYS
Mechanical

LS-DYNA Implicit
MSC Nastran

OptiStruct
Abaqus/Standard

Fluid Dynamics ANSYS Fluent Culises
(OpenFOAM)

Solid Growth of GPU Accelerated Apps

Accelerated, In Development

113

182

272

0

50

100

150

200

250

300

2011 2012 2013

of GPU-Accelerated Apps

270+ GPU-Accelerated Applications
www.nvidia.com/appscatalog

Performance on Leading Scientific
Applications

0.0x 2.0x 4.0x 6.0x 8.0x 10.0x 12.0x

Physics
CHROMA

Earth Science
 SPECFEM3D

Structural Mechanics
ANSYS

Molecular Dynamics
 AMBER

Material Science
 QMCPACK

E5-2687W @ 3.10GHz
Tesla K20X

Tesla K40

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Maximum
Flexibility

Directives

Easily Accelerate
Applications

Programming with CUDA

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra IMSL Library

Building-block
Algorithms for CUDA

ArrayFire Matrix
Computations

http://code.google.com/p/thrust/downloads/list

int N = 1<<20;
std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
 y.begin(), y.end(),
 2.0f * _1 + _2);

int N = 1<<20;
thrust::host_vector<float> x(N), y(N);

...

thrust::device_vector<float> d_x = x;
thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements
thrust::transform(d_x.begin(), d_x.end(),
 d_y.begin(), d_y.begin(),
 2.0f * _1 + _2);

Thrust C++ Template Library
Serial C++ Code

with STL and Boost Parallel C++ Code

thrust.github.com www.boost.org/libs/lambda

http://thrust.github.com/
http://www.boost.org/libs/lambda

Explore the CUDA (Libraries) Ecosystem

CUDA Tools and Ecosystem
described in detail on NVIDIA
Developer Zone:
developer.nvidia.com/cuda-tools-ecosystem

http://developer.nvidia.com/cuda-tools-ecosystem

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Maximum
Flexibility

Directives

Easily Accelerate
Applications

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs

OpenACC
Compiler

Hint

subroutine saxpy(n, a, x, y)
 real :: x(*), y(*), a
 integer :: n, i
!$acc parallel loop
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$acc end parallel
end subroutine saxpy

...
! Perform SAXPY on N elements
call saxpy(N, 3.0, x, y)
...

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc parallel loop
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on N elements
saxpy(N, 3.0, x, y);
...

SAXPY – OpenACC
SAXPY in C SAXPY in Fortran

subroutine saxpy(n, a, x, y)
 real :: x(*), y(*), a
 integer :: n, i
!$omp parallel do
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$omp end parallel do
end subroutine saxpy

...
! Perform SAXPY on N elements
call saxpy(N, 3.0, x, y)
...

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma omp parallel for
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on N elements
saxpy(N, 3.0, x, y);
...

SAXPY – OpenMP
SAXPY in C SAXPY in Fortran

OpenACC Implementations

OpenACC 2.0
launched

December 2013

OpenACC 2.0
launched

December 2013

OpenACC 2.0
Rolling out from
January 2014

OpenACC 2.0
Targeted for
late 2014/

early 2015

Known academic efforts:
• accULL – U. of La Laguna/EPCC
• Omni – U. of Tsukuba
• OpenARC – ORNL
• OpenUH – U. of Houston

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Maximum
Flexibility

Directives

Easily Accelerate
Applications

GPU Programming Languages

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

CUDA Python, PyCUDA Python

Alea.cubase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

CUDA 6 - Unified Memory
Dramatically Lower Developer Effort

Developer View Today Developer View With
Unified Memory

Unified Memory System
Memory

GPU Memory

CUDA 6 Release Candidate available now

Programming a CUDA-enabled Language

CUDA C/C++
Based on industry-standard C/C++
Small set of extensions to enable heterogeneous
programming
Straightforward APIs to manage devices, memory etc.

Prerequisites

You (probably) need experience with C or C++

You don’t need GPU experience

You don’t need parallel programming experience

You don’t need graphics experience

Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device

void saxpy(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0f, x, y);

SAXPY
Standard C Code

Parallelism on a GPU – CUDA Blocks

A function which runs on a GPU is called a “kernel”
Each parallel invocation of a function running on the
GPU is called a “block”

= BLOCK

A block can identify itself by reading blockIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = N-1

…

Grid0

… c

Grid1

blockIdx.x = W-1

Parallelism on a GPU – CUDA Threads

Each block is then broken up into “threads”

A thread can identify itself by reading threadIdx.x
The total number of threads per block can be read
with blockDim.x

In the above example blockDim.x = M

threadIdx.x = 0 threadIdx.x = 1 threadIdx.x = 2 threadIdx.x = M - 1

…

Block

= THREAD

Why threads and blocks?

Threads within a block can
Communicate very quickly (share memory)
Synchronize (wait for all threads to catch up)

Why break up into blocks?
Limiting cooperation to a subset of threads enables building
a high-performance hardware implementation.
By requiring all blocks to be independent, programs can
scale to larger or smaller GPUs without code changes or
even recompilation.

GPU X

Block 1 Block 3

Block 2 Block 4

Block 5

Block 6 Block 7

Block 8

GPU Y

Block 1 Block 3

Block 2

Block 4

Block 5

Block 6

Block 7 Block 8 Time

Kepler Block Diagram

SAXPY CPU

void saxpy_cpu(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

SAXPY kernel

__global__ void saxpy_gpu(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n)
 y[i] = a*x[i] + y[i];
}

blockIdx.x:
Our Block ID

blockDim.x:
Number of
threads per block

threadIdx.x:
Our thread
ID

i is now an index into our
input and output arrays

…

Block

SAXPY kernel – with data

__global__ void saxpy_gpu(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n)
 y[i] = a*x[i] + y[i];
}

Let’s work with 30 data
elements

Broken into 3 blocks, with 10 threads per
block

So, blockDim.x = 10

For blockIdx.x = 0
i = 0 * 10 + threadIdx.x = {0,1,2,3,4,5,6,7,8,9}

For blockIdx.x = 1
i = 1 * 10 + threadIdx.x = {10,11,12,13,14,15,16,17,18,19}

For blockIdx.x = 2
i = 2 * 10 + threadIdx.x = {20,21,22,23,24,25,26,27,28,29}

10 threads (hamsters)
each with a different i

Calling saxpy_gpu: main()

#define N (2048 * 512)
int main(void) {
 float *x, *y; // host copies
 int size = N * sizeof(float);

 // Alloc space for x & y and
 // setup input values
 cudaMallocManaged(&x, size);
 random_floats(x, N);
 cudaMallocManaged(&y, size);
 random_floats(y, N);

 // Launch saxpy on GPU
 saxpy_gpu<<<4096,256>>>(N, 2.0f, x, y);

 // Cleanup
 cudaFree(x); cudaFree(y);
 return 0;
}

#define N (2048 * 512)
int main(void) {
 float *x, *y; // host copies
 int size = N * sizeof(float);

 // Alloc space for x & y and
 // setup input values
 x = (float *)malloc(size);
 random_floats(x, N);
 y = (float *)malloc(size);
 random_floats(y, N);

 // Launch saxpy on CPU
 saxpy_cpu(N, 2.0f, x, y);

 // Cleanup
 free(x); free(y);
 return 0;
}

Standard C Code Parallel C Code

 x = (float *)malloc(size);

 y = (float *)malloc(size);

saxpy_cpu(N, 2.0f, x, y);

free(x); free(y);

NVIDIA® Nsight™ Eclipse Edition
for Linux and MacOS

CUDA-Aware Editor
Automated CPU to GPU code
refactoring
Semantic highlighting of CUDA code
Integrated code samples & docs

Nsight Debugger
Simultaneously debug CPU and GPU
Inspect variables across CUDA threads
Use breakpoints & single-step
debugging

Nsight Profiler
Quickly identifies performance issues
Integrated expert system
Source line correlation

,

developer.nvidia.com/nsight

NVIDIA® Nsight™ Visual Studio Ed.

System Trace
Review CUDA activities across CPU and GPU
Perform deep kernel analysis to detect factors

limiting maximum performance

CUDA Profiler
Advanced experiments to measure memory

utilization, instruction throughput and stalls

CUDA Debugger
Debug CUDA kernels directly on GPU hardware
Examine thousands of threads executing in parallel
Use on-target conditional breakpoints to locate

errors

CUDA Memory Checker
Enables precise error detection

,

NVIDIA Visual Profiler

Beyond HPC
Big Data

Visual Shopping

Real-time
Video Delivery

Searching Audio

Analyzing Twitter

With Fricken Laserbeams!

Created by Intellectual
Ventures to help fight
malaria in third world
countries
Image detection and
targeting is done with
NVIDIA GPUs

Resources: developer.nvidia.com/cudazone

Parallel Forall: devblogs.nvidia.com/parallelforall
CUDACasts at bit.ly/cudacasts

Short how-to screencasts

Self-paced labs: nvidia.qwiklab.com
90-minute labs, simply need a supported web browser

Documentation: docs.nvidia.com
Technical Questions:

NVIDIA Developer forums devtalk.nvidia.com
Search or ask on stackoverflow.com/tags/cuda

http://www.stackoverflow.com/

CUDA Registered Developer Program
Access to exclusive developer downloads

Double-Double Precision Library and Source
SIMD within a Word
Optimized LINPACK
And more…

Exclusive access to pre-release CUDA Installers
Like CUDA 6!

Submit bugs and features requests to NVIDIA Engineering
Exclusive activities and special offers
Membership is free and easy!

www.nvidia.com/paralleldeveloper

http://www.nvidia.com/paralleldeveloper

Sign up for FREE GPU Test Drive
on remotely hosted clusters

Accelerate your codes on
latest
GPUs today

Test Drive the World’s Fastest GPU
Accelerate Your Code on the New Tesla K40 GPU

www.nvidia.com/GPUTestDrive

Developer/Compute HPC/Big Data Graphics Life Science

Oil & Gas Finance Manufacturing Media & Entertainment

Graphics Virtualization Mobile App & Game
Development

PC Game Development In-car Infotainment

WHERE ART MEETS SCIENCE
MEETS ENGINEERING

 MEETS BUSINESS

 4 Days

 500+ Sessions

 150+ Research Posters

 1:1 With NVIDIA Experts

 50+ Countries

March 24-27, 2014 | San Jose, California

www.nvidia.com/gtc

20% Discount using
coupon code GM20ACM

http://www.nvidia.com/gtc

Getting Started

1.Try out GPU Computing:
developer.nvidia.com/cuda-education-training

2.Subscribe to Parallel Forall blog
3.Sign up as a Registered Developer
4.Install the CUDA Toolkit
5.Attend GTC 2014 or watch GTC On-Demand

© NVIDIA Corporation 2014

ACM: The Learning Continues…

Questions about this webcast? learning@acm.org

ACM Learning Webinars (on-demand archive):

 http://learning.acm.org/webinar

ACM Learning Center: http://learning.acm.org

ACM SIGHPC: http://www.sighpc.org/

ACM Queue: http://queue.acm.org

58

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://learning.acm.org/
http://www.sighpc.org/
http://www.sighpc.org/
http://queue.acm.org/
http://queue.acm.org/

© NVIDIA Corporation 2014

BACKUP SLIDES

© NVIDIA Corporation 2014

nvidia.qwiklab.com
90-minute, online, self-paced GPU
Programming labs
Only requires a browser and network
which supports Web Sockets

You can verify by going to
websocketstest.com and look for:

Internet Explorer 9 and earlier do NOT support Web
Sockets

© NVIDIA Corporation 2014

Udacity Parallel Programming Course

30,000+ Students Already
Registered

IT’S FREE!

Udacity.com

	NVIDIA Technology
	Slide Number 2
	Slide Number 3
	Founded in 1993��Jen-Hsun Huang is co-founder and CEO��Listed with NASDAQ under the symbol NVDA in 1999 ��Invented the GPU in 1999; �shipped more than 1 billion to date ��FY13: $4.3 billion in revenue ��8,500 employees worldwide��6,400 patent assets��Headquartered in Santa Clara, Calif.
	My Three Points
	Moore’s Law
	What makes up the brick wall?
	Slide Number 8
	The basic idea
	Three Major Accelerators
	Slide Number 11
	Slide Number 12
	Operating on a Beating Heart
	How do I use GPUs?
	What is CUDA?
	CUDA Parallel Computing Platform
	Growth of GPU Computing
	Growth of GPU Computing
	3 Ways to Accelerate Applications
	Solid Growth of GPU Accelerated Apps
	Slide Number 21
	Performance on Leading Scientific Applications
	3 Ways to Accelerate Applications
	Programming with CUDA
	Slide Number 25
	Thrust C++ Template Library
	Explore the CUDA (Libraries) Ecosystem
	3 Ways to Accelerate Applications
	OpenACC Directives�	
	SAXPY – OpenACC
	SAXPY – OpenMP
	OpenACC Implementations
	3 Ways to Accelerate Applications
	GPU Programming Languages�
	CUDA 6 - Unified Memory�Dramatically Lower Developer Effort
	Programming a CUDA-enabled Language
	Prerequisites
	Heterogeneous Computing
	SAXPY
	Parallelism on a GPU – CUDA Blocks
	Parallelism on a GPU – CUDA Threads
	Why threads and blocks?
	Kepler Block Diagram
	SAXPY CPU
	SAXPY kernel
	SAXPY kernel – with data
	Calling saxpy_gpu: main()
	NVIDIA® Nsight™ Eclipse Edition�for Linux and MacOS
	NVIDIA® Nsight™ Visual Studio Ed.
	NVIDIA Visual Profiler
	Beyond HPC �Big Data
	With Fricken Laserbeams!
	Resources: developer.nvidia.com/cudazone
	CUDA Registered Developer Program
	Slide Number 55
	Slide Number 56
	Getting Started
	ACM: The Learning Continues…
	Backup SLIDES
	nvidia.qwiklab.com
	Udacity Parallel Programming Course

