SANVIDIA.

NVIDIA TECHNOLOGY

Mark Ebersole ~

ACM Learning Center

http://learning.acm.orq

1,350+ trusted technical books and videos by leading publishers including O’Reilly, Morgan
Kaufmann, others

Online courses with assessments and certification-track mentoring, member discounts on tuition
at partner institutions

Learning Webinars on big topics (Cloud/Mobile Development, Cybersecurity, Big Data,
Recommender Systems, SaaS, Agile, Machine Learning, Natural Language Processing, Parallel
Programming, IPv6, WebGL, Big Data, ICSM)

ACM Tech Packs on top current computing topics: Annotated Bibliographies compiled by subject
experts

Popular video tutorials/keynotes from ACM Digital Library, A.M. Turing Centenary talks/panels

Podcasts with industry leaders/award winners

Talk Back

« Use the Facebook widget in the bottom panel to share
this presentation with friends and colleagues

e Use Twitter widget to Tweet your favorite quotes from
today’s presentation with hashtag #ACMWebinarGPU

e Submit questions and comments via Twitter to
@acmeducation - we’re reading them!

Founded in 1993
Jen-Hsun Huang is co-founder and CEO

Listed with NASDAQ under the symbol
NVDA in 1999

Invented the GPU in 1999;
shipped more than 1 billion to date

FY13: $4.3 billion in revenue

8,500 employees worldwide
nv I D I A 6,400 patent assets
®

Headquartered in Santa Clara, Calif.

My Three Points A

1.What is Accelerated Computing?

2.The Why and How of GPUs

3.Resources

X
n U-Hn

I
ry v
=] o
-

paads %00(9 NdISdIN
Junod Jojsisuel]

=
©
—
W

Moore’

What makes up the brick wall? A

™ ~uvnsmnme \Ala)

I VUYVYCIl vyvdlil

AR men sy VAL

wiG IUIy yvydaii

. iR ™ AN
L Ikl WVYAII
— ™ var 1, VAR 1)

. LI yvydaii

Heterogeneous Computing A

Accelerator

The basic idea >
Application Code

Compute-Intensive Functions ‘

Accelerator

 eee—

] Rest of Sequential
CPU Code

O ee—

p

Three Major Accelerators A

>

nvinDia

DIAGNOSTIC IMAGING PERFORMANCE
Real-Time Image Reconstruction with
GPUs.

Operating on a Beating Heart >)

' Only 2% of surgeons will operate on a

beating heart

Patient stands to lose 1 point of IQ
everyl0 min with heart stopped

GPU enables real-time motion
compensation to virtually stop beating
heart for surgeons

How do | use GPUS? >

What is CUDA? >

® Programming language?
& Compiler?

Classic car?
¢ Beer?

* Wine?

®

Coffee?

CUDA Parallel Computing Platform

o

nvIDIA
www.nvidia.com/getcuda

r N
Approaches ' '
\ “Drop-in” Acceleration Easily Accelerate Apps Maximum Flexibility — /
é N
Nsight IDE
Dev_elopment Linux, Mac and Windows I\?\l/JIB'IA‘A_C\;/DB dlegu%gler
Environment GPU Debugging and Profiling ietRtell [retilEls)
\
Open Compl Ier Enables compiling new languages to CUDA platform, and
Tool Chain CUDA languages to other architectures
2 Dynamic Parallelism HyperQ GPUDirect R
Hardware - =
Capabilities
. J

Growth of GPU Computing

100M
CUDA -Capable @

GPUs

150K i

CUDA Downloads

77

Supercomputing
Teraflops

University Courses

4,000 %
Academic Papers

Growth of GPU Computing

100M

CUDA -Capable
GPUs

150K

CUDA Downloads

7

Supercomputing
Teraflops

610)

University Courses

Z0]0[0)

Academic Papers

=X

430M

CUDA-Capable
GPUs

LU

2.2M

CUDA Downloads

LU DL DL LD L DL LD L LD L LD L L DL L L

LU LD DL LD DL DL LD L L 4 1 7 O O
LU DL DL LD L DL LD L LD L LD L L DL L L J _
ENNRRNNARNNANNARRN AR A RN AR A RN AR AR AN AR AR RN NAR AR NARENANNRARNNARNARNARENRRNNANNNRRRRENE Supercomputing
ANNNREEEEEEEEEEE NN AANARAA AN ARR RN NN NNNNNNNARRRRRRRRRRREERERERE Teraflops
UL]

LA-2 8 8 8 8 8 82 28 8

EEEEEEESEEEE

/38

University
Courses

50,000

Academic Papers

2008

2014

3 Ways to Accelerate Applications

o

nvinDia

Applications]
r N h
: : : : Programming
Libraries Directives Languages
_ J U J
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

Solid Growth of GPU Accelerated Apps &,
Top HPC Applications

of GPU-Accelerated Apps

300 272

250

200

150

100

50

2011 2012 2013

Molecular
Dynamics

Quantum
Chemistry

Material Science
Weather & Climate
Lattice QCD

Plasma Physics

Structural
Mechanics

Fluid Dynamics

AMBER GROMACS
CHARMM LAMMPS
DESMOND NAMD

Abinit GAMESS
Gaussian NWChem

CP2K Quantum Espresso
QMCPACK VASP

COSMO C@"M'gE

GEOS-5 NIM

HOMME WRE

Chroma MILC

GTC GTS

ANSYS

Mechanical OptiStruct

LS-DYNA Implicit Abaqus/Standard
MSC Nastran

Culises
(OpenFOAM)

Accelerated, In Development

ANSYS Fluent

NVIDIA

T

[270+ GPU-Accelerated Applications

www.nvidia.com/appscatalog |

Performance on Leading Scientific =
Applications

Structural Mechanics M=
ANSYS ;:

Physics ————
CHROMA

.
L
AMBER

Material Science ===
QMCPACK

—_—
L ——————
SPECFEM3D

¥ E5-2687W @ 3.10GHz (ON0)'¢ 0)'¢ 4.0x 6.0x 8.0x 10.0x 12.0x
¥ Tesla k20X
~ Tesla K40

3 Ways to Accelerate Applications .

Applications]
4 N\ ([A
: : Programming
Directives Languages
_ J . y,
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

Programming with CUDA

X

nvinDlia

NVIDIA cuBLAS NVIDIA cuRAND

GPU USIPL

Vector Signal GPU Accelerated Matrix Algebra on
Image Processing Linear Algebra GPU and Multicore s

o | 18] o

SRON TR ArrayFire Matrix Sparse Linear “ C++ STL Features o
IMSL Library Computations Algebra for CUDA i

http://code.google.com/p/thrust/downloads/list

Thrust C++ Template Library <.

Serial C++ Code

with STL and Boost

ﬁt N = 1<<20;
std::vector<float> x(N), y(N);

// Perform SAXPY on 1M elements

2.0F * 1+ 2);

_

std::transform(x.begin(), x.end(),
y-begin(), y-endQ),

~

Parallel C++ Code

//;::7N = 1<<20; “\\\
thrust::-host vector<float> x(N), y(N);

thrust: :device vector<float> d_x
thrust::device vector<float> d_y

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(),
d_y.begin(), d_y.beginQ),
2.0F * 1+ 2);

W

www.boost.org/libs/lambda

_ b

thrust.qgithub.com

http://thrust.github.com/
http://www.boost.org/libs/lambda

<3

Explore the CUDA (Libraries) Ecosystem

* CUDA Tools and Ecosystem e
described in detail on NVIDIA e —

aIniA

Developer Zone:
developer.nvidia.com/cuda-tools-ecosystem

http://developer.nvidia.com/cuda-tools-ecosystem

3 Ways to Accelerate Applications

>

nvinDia

Applications

]

Libraries

“Drop-in”
Acceleration

Directives

Easily Accelerate
Applications

4 ™)
Programming
Languages
- y,
Maximum
Flexibility

OpenACC Directives S

nvinia

CPU
Simple Compiler hints
g e —— Compiler Parallelizes code
... Serial code ...
oo OpenAce
doi=1n2 Compiler Works on many-core GPUs &
" llel code”... . .
endto sl multicore CPUs
enddo

I$acc end kernels

End Program myscience

Your original
Fortran or C code

SAXPY - OpenACC

SAXPY in C
/’:::; saxpy(int n,

float a,

float *x,

float *restrict y)
{

#pragma acc parallel loop
for (int 1 = 0; 1 < n; ++i)

yLi]l = a*x[i] + y[il;

// Perform SAXPY on N elements
saxpy(N, 3.0, X, y);

~

SAXPY in Fortran

3

nvinDia

Groutine saxpy(n, a, X, Yy)

real :: x(*), y(*). a
integer :: n, i
I1$acc parallel loop
do 1=1,n
y(1) = a*x(1)+y(i)
enddo
I1$acc end parallel
end subroutine saxpy

I Perform SAXPY on N elements
call saxpy(N, 3.0, X, y)

/

C

~

/

SAXPY - OpenMP

SAXPY In C
/’:::; saxpy(int n,

float a,

float *x,

float *restrict y)
{

#pragma omp parallel for
for (int 1 = 0; 1 < n; ++i)

yLi]l = a*x[i] + y[il;

// Perform SAXPY on N elements
saxpy(N, 3.0, X, y);

~

SAXPY in Fortran

3

nvinDia

G)routine saxpy(n, a, X, Yy)

real :: x(*), y(*). a
integer :: n, i
1$omp parallel do
do 1=1,n
y(1) = a*x(i)+y(i)
enddo
1$omp end parallel do
end subroutine saxpy

I Perform SAXPY on N elements
call saxpy(N, 3.0, X, y)

/

C

~

/

OpenACC Implementations

OpenACC 2.0
launched
December 2013

OpenACC 2.0
launched
December 2013

PGl

OpenACC 2.0
Rolling out from
January 2014

=

nviDia

OpenACC 2.0
Targeted for
late 2014/
early 2015

Known academic efforts:
accULL — U. of La Laguna/EPCC
Omni — U. of Tsukuba
OpenARC — ORNL
OpenUH — U. of Houston

3 Ways to Accelerate Applications .

Applications
-
Libraries Directives
-
“Drop-in” Easily Accelerate

Acceleration

~

J

Applications

Programming

_anguages

Maximum
Flexibility

GPU Programming Languages =

Numerical analytics» MATLAB, Mathematica, LabVIEW

Fortran > OpenACC, CUDA Fortran

C P OpenACC, CUDAC

C++ P Thrust, CUDA C++

Python B CUDA Python, PyCUDA

F# B Alea.cubase

CUDA 6 - Unified Memory A
Dramatically Lower Developer Effort

Developer View Today Developer View With
Unified Memory
! !
System GPU Memory Unified Memory

Memory

CUDA 6 Release Candidate available now

Programming a CUDA-enabled Language =

* CUDA C/C++
® Based on industry-standard C/C++
® Small set of extensions to enable heterogeneous
programming
® Straightforward APIs to manage devices, memory etc.

Prerequisites >

* You (probably) need experience with C or C++
®* You don’t need GPU experience
® You don’t need parallel programming experience

® You don’t need graphics experience

Heterogeneous Computing > A

= Terminology:
= Host The CPU and its memory (host memory)
= DeviceThe GPU and its memory (device memory)

Device

SAXPY

Standard C Code

e

void saxpy(int n, float a, float *x, float *y)
{

for (int 1 = 0; 1 < n; ++I)
yL[i] = a*x[1] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0Ff, x, y);

N

3

nvinDia

Parallelism on a GPU - CUDA Blocks >

alled a “kernel”
N running on the

rida

=i gt E =is=n i]

blockldx.x = N-I

g blockldx.x

UDA Threads 2

D into ““th readsBI

o

threadldx.x = 2

ock

threadldx.x=M -1

by reading threadldx.x
s per block can be read

»

In the above example blockDim.x = M

X

Why threads and blocks? s, !

GPU X GPU Y

Threadls Ioc
ann@

u “J \" = = - J 7
lock lock
Syndhrc aII threads to catch up)

Block 8 Block 5

Why break up into blocks?
Limiting cooperation to a subset of threads enables building
a high-performance hardware implementation.

By requiring all blocks to be independent, programs can
scale to larger or smaller GPUs without code changes or

even recompilation.

Kepler Block Diagram >

PCl Express 3.0 Host Interface

Jajjanuoy Aowapy

Jajjonuod Aoway

Jejjonuogy Aiowaw
mjjonuoy Aioway

Jejjoijuo] Mowaep
Jajjonuoy Koway

SAXPY CPU

void saxpy _cpu(int n, float a, float *x, float *y)
{

for (int 1 = 0; 1 < n; ++0I)
yL[i]l = a*x[i] + y[il;

SAXPY kernel >

~_global void saxpy _gpu(int n, float a, float *x, float *y)

nt 1 = blockldx_.x*blockDim.x + threadldx.x;
f 1))

SAXPY kernel - with data 2

~_global void saxpy _gpu(int n, float a, float *x, float *y)

{
int 1 = blockldx.x*blockDim.x + threadldx.x;
it (1 <n)
yL[il = a*x[i] +/4L11;
} 10 threads (hamsters)

each with a different i

® Eet’blockdxwth G0 data————,

elenmahn + threadldx.x = {0,1,2,3,4,5,6,7,8,9}

® For Bloekldie Xbiocks, with 10 threads per
PlogK 10 + threadidx.x = {10,11,12,13,14,15,16,17,18,19}

F8r Bloekidkx=210

¢ 1=2%*10 + threadldx.x = {20,21,22,23,24,25,26,27,28,29}

®

Calling saxpy_gpu: mainQ)

Standard C Code

#define N (2048 * 512)

int main(void) {
float *x, *y; // host copies
Iint size = N * sizeof(float);

// Alloc space for x & y and
// setup input values

x = (float *)malloc(size);
random_floats(x, N);

y = (float *)malloc(size);
random_floats(y, N);

// Launch saxpy on CPU
saxpy_cpu(N, 2.0Ff, x, y);

// Cleanup
free(xX); free(y);
return O;

Parallel C Code

>

nvinDia

#define N (2048 * 512)

int main(void) {
float *x, *y; // host copies
Int size = N * sizeof(float);

// Alloc space for x & y and
// setup input values

x = (Float *)malloc(size);
random_ floats(x, N);

y = (Float *)malloc(size);
random_floats(y, N);

// Launch saxpy on GPU
saxpy_cpu(N, 2.0Ff, x, y);

// Cleanup
free(x); free(y):
return O;

NVIDIA® Nsight™ Eclipse Edition
for Linux and MacOS

CUDA-Aware Editor Nsight Debugger Nsight Profiler
® Automat_ed CPU to GPU code ® Simultaneously debug CPU and GPU ® Quickly identifies performance issues
- refactor_lng_ e ® Inspect variables across CUDA threads ® Integrated expert system
Semantic highlighting of CUDA code ® Use breakpoints & single-step ® source line correlation
® Integrated code samples & docs debugging

developer.nvidia.com/nsight

CUDA Debugger

® Debug CUDA kernels directly on GPU hardware
® txamine thousands of threads executing in parallel

® Use on-target conditional breakpoints to locate
errors

CUDA Memory Checker
® chables precise error detection

System Trace

e Review CUDA activities across CPU and GPU

® perform deep kernel analysis to detect factors
limiting maximum performance

CUDA Profiler

® Advanced experiments to measure memory
utilization, instruction throughput and stalls

NVIDIA Visual Profiler 2

File Wiew Run Help

CupAkernel 1DCTi{Roat®, int, int, int)

Mame

—
CUDAkemel LIDCT(foats, int...

Feset All
Timel
Miultiprocessor
Kernel Memory g : i g \ of compute]

M

Kernel Instruction

Beyond HPC
Big Data

Analyzing Twitter

Searching Audio

Visual Shopping

Real-time
Video Delivery

S

nvinDlAa

salegf)rce" ,

& sHazam

f® CORTEXICA

sbey

ELEM ENTAL@'

=21l

>

nvinDia

With Fricken Laserbeams!

® Created by Intellectual
Ventures to help fight
malaria in third world
countries

Image detection and
targeting is done with
NVIDIA GPUs

Resources: developer.nvidia.com/cudazone

® Parallel Forall: devblogs.nvidia.com/parallelforall

® CUDACasts at bit.ly/cudacasts
* Short how-to screencasts

® Self-paced labs: nvidia.qwiklab.com
® 90-minute labs, simply need a supported web browser

® Documentation: docs.nvidia.com

® Technical Questions:
¢ NVIDIA Developer forums devtalk.nvidia.com
® Search or ask on stackoverflow.com/tags/cuda

o

nvinDia

http://www.stackoverflow.com/

CUDA Registered Developer Program

* Access to exclusive developer downloads
Double-Double Precision Library and Source
SIMD within a Word
Optimized LINPACK
¢ And more...

® Exclusive access to pre-release CUDA Installers
* Like CUDA 6!

Submit bugs and features requests to NVIDIA Engineering

Exclusive activities and special offers

* Membership is free and easy!
www.nvidia.com/paralleldeveloper

<3

nvinia

http://www.nvidia.com/paralleldeveloper

Test Drive the World’s Fastest GPU &

Accelerate Your Code on the New Tesla K40 GPU

~ Accelerate your codes on
> latest
GPUs today

:— Sign up for FREE GPU Test Drive
J on remotely hosted clusters

www.nvidia.com/GPUTestDrive

March 24-27, 2014 | San Jose, California

WHERE ART MEETS SCIENCE
MEETS ENGINEERING
MEETS BUSINESS

4 Days
500+ Sessions
150+ Research Posters

1:1 With NVIDIA Experts

50+ Countries

www.nvidia.com/qgtc

20% Discount using

coupon code GM20ACM

Oil & Gas

Graphics Virtualization

o0
2 1\\“Q
= s

Mobile App & Game
Development

PC Game Development In-car Infotainment

http://www.nvidia.com/gtc

Getting Started >

1.Try out GPU Computing:

developer.nvidia.com/cuda-education-training
2.Subscribe to Parallel Forall blog
3.Sign up as a Registered Developer
4.Install the CUDA Toolkit
5.Attend GTC 2014 or watch GTC On-Demand

<=

ACM: The Learning Continues... nVviDIA

® Questions about this webcast? learning@acm.org

® ACM Learning Webinars (on-demand archive):
http://learning.acm.org/webinar

® ACM Learning Center: http://learning.acm.org
® ACM SIGHPC: http://www.sighpc.org/
® ACM Queue: http://queue.acm.org .

© NVIDIA Corporation 2014

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://learning.acm.org/
http://www.sighpc.org/
http://www.sighpc.org/
http://queue.acm.org/
http://queue.acm.org/

<3

nviDIA.

BACKUP SLIDES

© NVIDIA Corporation 2014

nvidia.qgwiklab.com

90-minute, online, self-paced GPU
Programming labs

Only requires a browser and network
which supports Web Sockets

* You can verify by going to
websocketstest.com and look for:

WebSockets (Fort 80)

¥ you hawe never bedore taken an Pyfhon fichebook hased seilpaced lab tom MIDEA. cick ths green box

Introduction to CUDA Fortran

Internet Explorer 9 and earlier do support Web
Sockets

i1
|

© NVIDIA Corporation 2014

<2

Udacity Parallel Programming Course nVIDIA

Learn. Think. Do.

U DAC ITY nvent you future thro Ugn free interactive college classes.

30,000+ Students Already
Registered

IT’S FREE!

© NVIDIA Corporation 201U d a C itv ° C o m

	NVIDIA Technology
	Slide Number 2
	Slide Number 3
	Founded in 1993��Jen-Hsun Huang is co-founder and CEO��Listed with NASDAQ under the symbol NVDA in 1999 ��Invented the GPU in 1999; �shipped more than 1 billion to date ��FY13: $4.3 billion in revenue ��8,500 employees worldwide��6,400 patent assets��Headquartered in Santa Clara, Calif.
	My Three Points
	Moore’s Law
	What makes up the brick wall?
	Slide Number 8
	The basic idea
	Three Major Accelerators
	Slide Number 11
	Slide Number 12
	Operating on a Beating Heart
	How do I use GPUs?
	What is CUDA?
	CUDA Parallel Computing Platform
	Growth of GPU Computing
	Growth of GPU Computing
	3 Ways to Accelerate Applications
	Solid Growth of GPU Accelerated Apps
	Slide Number 21
	Performance on Leading Scientific Applications
	3 Ways to Accelerate Applications
	Programming with CUDA
	Slide Number 25
	Thrust C++ Template Library
	Explore the CUDA (Libraries) Ecosystem
	3 Ways to Accelerate Applications
	OpenACC Directives�	
	SAXPY – OpenACC
	SAXPY – OpenMP
	OpenACC Implementations
	3 Ways to Accelerate Applications
	GPU Programming Languages�
	CUDA 6 - Unified Memory�Dramatically Lower Developer Effort
	Programming a CUDA-enabled Language
	Prerequisites
	Heterogeneous Computing
	SAXPY
	Parallelism on a GPU – CUDA Blocks
	Parallelism on a GPU – CUDA Threads
	Why threads and blocks?
	Kepler Block Diagram
	SAXPY CPU
	SAXPY kernel
	SAXPY kernel – with data
	Calling saxpy_gpu: main()
	NVIDIA® Nsight™ Eclipse Edition�for Linux and MacOS
	NVIDIA® Nsight™ Visual Studio Ed.
	NVIDIA Visual Profiler
	Beyond HPC �Big Data
	With Fricken Laserbeams!
	Resources: developer.nvidia.com/cudazone
	CUDA Registered Developer Program
	Slide Number 55
	Slide Number 56
	Getting Started
	ACM: The Learning Continues…
	Backup SLIDES
	nvidia.qwiklab.com
	Udacity Parallel Programming Course

