

“Housekeeping”

• Welcome to today’s ACM Webinar. The presentation starts at the top of the hour.

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key on your
keyboard in Windows, Command + R if on a Mac, or refresh your browser if you’re on a mobile
device; or close and re-launch the presentation. You can also view the Webcast Help Guide, by
clicking on the “Help” widget in the bottom dock.

• To control volume, adjust the master volume on your computer.

• If you think of a question during the presentation, please type it into the Q&A box and click on the
submit button. You do not need to wait until the end of the presentation to begin submitting
questions.

• At the end of the presentation, you’ll see a survey open in your browser. Please take a minute to
fill it out to help us improve your next webinar experience.

• You can download a copy of these slides by clicking on the Resources widget in the bottom dock.

• This presentation is being recorded and will be available for on-demand viewing in the next 1-2
days. You will receive an automatic e-mail notification when the recording is ready.

1

The Changing Nature of Invention in
Computer Science

Dennis Shasha
Based on two books with journalist

Cathy Lazere

• 1,400+ trusted technical books and videos by leading publishers including
O’Reilly, Morgan Kaufmann, others

• Online courses with assessments and certification-track mentoring, member
discounts on tuition at partner institutions

• Learning Webinars on big topics (Cloud/Mobile Development, Cybersecurity, Big
Data, Recommender Systems, SaaS, Agile, Machine Learning, NLP, Hadoop
Parallel Programming, etc.)

• ACM Tech Packs on top current computing topics: Annotated Bibliographies
compiled by subject experts

• Popular video tutorials/keynotes from ACM Digital Library, A.M. Turing Centenary
talks/panels

• Podcasts with industry leaders/award winners

ACM Learning Center
http://learning.acm.org

3

“Housekeeping”

• Welcome to today’s ACM Webinar. The presentation starts at the top of the hour.

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key on your
keyboard in Windows, Command + R if on a Mac, or refresh your browser if you’re on a mobile
device; or close and re-launch the presentation. You can also view the Webcast Help Guide, by
clicking on the “Help” widget in the bottom dock.

• To control volume, adjust the master volume on your computer.

• If you think of a question during the presentation, please type it into the Q&A box and click on the
submit button. You do not need to wait until the end of the presentation to begin submitting
questions.

• At the end of the presentation, you’ll see a survey open in your browser. Please take a minute to
fill it out to help us improve your next webinar experience.

• You can download a copy of these slides by clicking on the Resources widget in the bottom dock.

• This presentation is being recorded and will be available for on-demand viewing in the next 1-2
days. You will receive an automatic e-mail notification when the recording is ready.

4

Talk Back

• Use the Facebook widget in the bottom panel to
share this presentation with friends and
colleagues

• Use Twitter widget to Tweet your favorite quotes
from today’s presentation with hashtag
#ACMWebinarCSInventor

• Submit questions and comments via Twitter to
@acmeducation – we’re reading them!

Great Inventor 1

• "I flunked out every year. I never studied. I
hated studying. I was just goofing around. It
had the delightful consequence that every
year I went to summer school in New
Hampshire where I spent the summer sailing
and having a nice time."

John Backus/inventor of Fortran

Late Start on a Career

• Graduates at 25 from Columbia’s College of
General Studies. No idea what to do.

• Gets job at IBM programming astronomy
problems on a vacuum tube computer

• Likes the physics. Finds the programming
difficult (no floating point numbers; just fixed
width integers).

What it was like

"You had to know so much about the problem--
it had all these scale factors--you had to keep
the numbers from overflowing or setting big
round off errors. So programming was very
complicated because of the nature of the
machine."

What to Do?

• Grin and bear it.
• Work harder/just get it right.

Not Backus

• First a floating point to fixed length compiler.
• Second, suggests the design of a programming

language for IBM’s next machine – FORTRAN.
• “It would just mean getting programming

done a lot faster. “

Atmosphere of Invention

• Designing the language was “easy”
• Making it run fast enough so people would

use it was hard.
• Linguists, mathematicians, logicians…
• Backus describes his role: break up the chess

games that were still going at 2 PM.

Upshot of FORTRAN

• Tremendously popular in industry
(engineering and the beginning of data
processing).

• Academics liked it less – no recursion, hard to
do symbolic manipulation.

• Led to Lisp and also to Algol.

Design of Algol

• European-led meetings to design a new
language.

• "They would just describe stuff in English.
Here's this statement --- and here's an
example. You were hassled in these
committees enough to realize that
something needed to be done. You needed to
learn how to be precise."

Context-Free Grammars
(Backus and Naur)

• S::= ASSIGNMENT | IFTHEN | IFTHENELSE
• IFTHEN ::= if EXP then S end
• IFTHENELSE ::= if EXP then S else S end

Last Challenge

• Backus complained about his own inventions:
• “Once you've written a FORTRAN program,

you can't tell what's going on really. It takes
these two numbers and multiplies them and
stores them here and does some other junk
and then makes this test. Trying to do that
calculation in a different way [is very
difficult] because you basically don't
understand what the program is doing.”

Backus’s Solution:
Functional Programming

• Side-effect free functions
• Clarity
• Composition
• Parallelism
• E.g. dotprod: {[x;y] sum x*y}

Backus Style

• Annoyed?
– Don’t grin and bear it.
– Change it!
– “The best way to predict the future is to invent it”

Alan Kay

• If you still don’t like what you see, then
change it again.

Inventor 2:
What Makes Him Tick

• Our second inventor was an outstanding
student, a strong mathematician, and logician.

• Institute for Advanced Studies after his
master’s.

• Full professor of mathematics early on.

Some of his Best Known Work

• Non-deterministic finite state automaton
(with Dana Scott): take Turing’s model,
simplify it, but add a smidgeon of choice.

• Randomized algorithms: throw dice in the
middle of a computational recipe to speed
things up.

• Numbers almost certainly prime….[i.e.
method might declare a number is prime with
small prob or error]

Against the Grain?

• Nothing in the computational culture
encourages this way of thinking.

• Typical operations have names like “do”,
“assign”, “end”, “add”, “copy” – a dance of
imperatives.

• Rabin’s work involved giving the machine
choice.

Michael Rabin (a few years ago)

Small sampling of prizes:
Turing Award
American Academy of Sciences
French …
British…
Numerous Honorary Doctorates

Spy vs. Spy

• In 1958, John McCarthy proposed the following
puzzle to Michael Rabin.

• There are two countries in a state of war. One
country is sending spies into the other country. The
spies do their spying and then they come back. They
are in danger of being shot by their own guards as
they try to cross the border.

Spies Enter and Leave

Guard

Guard

Spy vs. Spy Goal

• “So you want to have a password
mechanism. The assumption is that the spies
are high caliber people and can keep a
secret. But the border guards go to the local
bars and chat---so whatever you tell them
will be known to the enemy”

Spy vs. Spy Goal

• “Can you devise an arrangement by which
the spy will be able to come safely through,
but the enemy will not be able to introduce
its own spies by using information entrusted
to the guards?”

Spy vs. Spy (BIG hint)

• Rabin made use of the following procedure
first introduced by Von Neumann to generate
pseudo-random numbers: take an n digit
number x, square it and take the middle n
digits yielding y.

• E.g. x=341  341*341=116281162=y
• Easy to go from x to y, but hard from y to x….

Implications of Spy vs. Spy puzzle

• Difficulty can be useful to help share secrets.
• Whole notion of complexity goes beyond

decidability and undecidability to feasibility
and infeasibility.

Rabin Style

• Find (usually through discussion) simple to
understand problems that others consider too
difficult to solve.

• Find an algorithm that was hard to come up
with but simple and efficient to implement

Problem We Solved

• Can one prevent software piracy while
– Allowing freeware/fair use/exchange
– Encouraging viral distribution

• And without
– Infringing on privacy
– Involving the courts

Invent with an Amplifier

• So far, we have seen inventors that use clever
design.

• Computers are later put to work.
• Major tradition of engineering: ever-

increasing precision and control.

But What About New Environments?

• Spacecraft: bombarded by particles.
• Everything could go wrong … unknown

unknowns
• Can’t anticipate everything

When Something Goes Wrong,
what should a spacecraft do?

• Call home
• Like a kid who scraped his knees while playing

with Billy

What Does Glenn Reeves Do?

• Try to duplicate the problem on local
hardware.

• If so, send “code patches” to spacecraft.
• This works … kind of (messages take 10+

minutes to arrive)

Is There Another Approach?

• When your kid gets older, you expect him to
fend for himself/herself.

• Can we ask spacecraft to do the same thing?

Circuits Redesign Themselves

• Just like an older kid who has a bruise, the
circuit tries to make itself operational, by
tweaking its circuit connections.

• No human intervention.
• Human role: new age parenting rather than

the spare-the-rod-spoil-the-child style

Any Applications Closer to Home?

• How about just a few blocks/few kilometers
away?

Form of What They Want

• “If the price of a 10-year treasury rises by a
certain amount over 2 minutes while the 5-
year treasury doesn’t move, then the 5-year
treasury is likely to rise in the next 2
minutes.”

Problem of Finding Them

• “Amrut just handed me 28,000 attributes—
the slope of the traded price over 2 minutes,
the slope of the bid volume over 30 minutes,
and so on. He said, ‘The answer’s in there
somewhere.’”

• If each attribute has 10 values, we’re talking
about 1000000000000000… <28,000 zeroes>
possibilities.

How Should One Go About This?

• “We needed to think of something that was
autonomous and could churn through billions
of combinations. We didn’t have time to
think of what the actual relationships were….
We realized that in the end, this would be a
truly black-box system. ”

Rubber Meets the Road

• They turned the algorithm on at 9:00 AM on a
Monday. The system bought and sold $10
million worth of securities in a few minutes.

• “I was sweating. I used to bring two shirts to
work for the first couple of months. It was
exhilarating in a jumping-out-of-a-plane sort
of way.”

Unintended Consequences

• Mostly autonomous systems, solving new
problems in new environments

• Accidents happen.
• Can they be contained?

Problem Existed 100 Years Ago

• Titanic: “practically speaking unsinkable”
• It sunk
• No lookouts
• Going too fast
• Not enough rafts
• No training for mishap

A Gallery of Oversights

• Bhopal: designed for safety
• Blew up
• Methyl Cyanide mixed with water
• MIC not refrigerated
• Smokestack scrubbers out of service
• Population not told about wet cloth

Levels of Feedback

• Bad things happen
• Levels of feedback and correction
• Skin heals itself
• Other arm takes over
• Other people help out

Nancy Leveson:
New Approach to Safety

• Levels of feedback and correction
• Make sure safety features stay operational
• Hierarchical design not only for functionality

(what should happen) but for safety (what
shouldn’t happen)

The Place for Natural Computing

• Problems with many unknowns, requiring
rapid reaction, and enormous search spaces.

• Aerospace, trading system design, …
• So much happening without human

intervention.

A Place for You

• You cannot be the inventor of the first
computer language.

• You can however be ready when a new
confluence of technologies requires creative
solutions.

Invention Styles

• Easily angered (Backus)
• Like puzzles (Rabin)
• Repair stuff (Glenn Reeves)
• Encourage autonomay (Adrian, Glenn, Amrut)
• Exploit feedback (Nancy Leveson)

What is Your Style?

Dennis Shasha, 2011.

Overall System Architecture

Content
Author

Content
Vendor

Superfingerprint
 Server (Copyrights)

Guardian
Center

User Device

Content

Tags Signed Tag

Signed Tags

Purchase
Order

Content

SPFs

Call-ups (TTIDs)

Continuation
messages

Content identifying info

Whither Human Creative Role?

• People lose monopoly on creative thinking.
• Creativity is redefined to exclude computer’s

role.
• People view machines as co-workers and co-

inventors, very adaptive nimble ones at that …

Whither Invention?

• Invention in the future (human role):
– model problem/design framework
– design for safety

• Invention in the future (computational role):
– explore search space
– try stuff-test-try-test-try-…

ACM: The Learning Continues…

• Questions about this webcast? learning@acm.org

• ACM Learning Webinars (on-demand archive):
 http://learning.acm.org/webinar

• ACM Learning Center: http://learning.acm.org

• ACM Digital Library: http://dl.acm.org

• ACM Fellows (and other awards): http://awards.acm.org/fellow

66

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://dl.acm.org/
http://dl.acm.org/
http://awards.acm.org/fellow
http://awards.acm.org/fellow

	Slide Number 1
	The Changing Nature of Invention in �Computer Science
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Great Inventor 1
	John Backus/inventor of Fortran
	Late Start on a Career
	What it was like
	What to Do?
	Not Backus
	Atmosphere of Invention
	Upshot of FORTRAN
	Design of Algol
	Context-Free Grammars �(Backus and Naur)
	Last Challenge
	Backus’s Solution: �Functional Programming
	Backus Style
	Inventor 2:�What Makes Him Tick
	Some of his Best Known Work
	Against the Grain?
	Michael Rabin (a few years ago)
	Spy vs. Spy
	Spies Enter and Leave
	Spy vs. Spy Goal
	Spy vs. Spy Goal
	Spy vs. Spy (BIG hint)
	Implications of Spy vs. Spy puzzle
	Rabin Style
	Problem We Solved
	�Invent with an Amplifier
	Slide Number 32
	But What About New Environments?
	Slide Number 34
	Slide Number 35
	When Something Goes Wrong,�what should a spacecraft do?
	Slide Number 37
	Slide Number 38
	What Does Glenn Reeves Do?
	Slide Number 40
	Is There Another Approach?
	Slide Number 42
	Slide Number 43
	Circuits Redesign Themselves
	Slide Number 45
	Any Applications Closer to Home?
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Form of What They Want
	Problem of Finding Them
	How Should One Go About This?
	Rubber Meets the Road
	Unintended Consequences
	Problem Existed 100 Years Ago
	A Gallery of Oversights
	Levels of Feedback
	Nancy Leveson: �New Approach to Safety
	The Place for Natural Computing
	A Place for You
	Invention Styles
	What is Your Style?
	Overall System Architecture
	Whither Human Creative Role?
	Whither Invention?
	ACM: The Learning Continues…

