
1

Material copyright Bertrand Meyer, 2015

Based in part on the book Agile! The Good, the Hype and the Ugly
by Bertrand Meyer, Springer, 2014

Agile Methods:
The Good, the Hype and the Ugly

ACM Webinar,18 February 2015

Bertrand Meyer

Chair of
Software Engineering

2

Where it came from
.

3

• Learning Center tools for professional development: http://learning.acm.org
• 1,400+ trusted technical books and videos by O’Reilly, Morgan Kaufmann, etc.
• Online training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, PMI, etc
• Learning Webinars from thought leaders and top practitioner
• ACM Tech Packs (annotated bibliographies compiled by subject experts
• Podcast interviews with innovators and award winners

• Popular publications:

• Flagship Communications of the ACM magazine: http://cacm.acm.org/
• ACM Queue magazine for practitioners: http://queue.acm.org/

• ACM Digital Library, the world’s most comprehensive database of computing

literature: http://dl.acm.org.

• International conferences that draw leading experts on a broad spectrum of
computing topics: http://www.acm.org/conferences.

• Prestigious awards, including the ACM A.M. Turing and Infosys:
http://awards.acm.org/

• And much more…http://www.acm.org.

ACM Highlights

http://learning.acm.org/
http://cacm.acm.org/
http://queue.acm.org/
http://dl.acm.org/
http://dl.acm.org/
http://www.acm.org/conferences
http://www.acm.org/conferences
http://awards.acm.org/
http://awards.acm.org/
http://www.acm.org/

4

Talk Back

• Use Twitter widget to Tweet your favorite quotes
from today’s presentation with hashtag
#ACMWebinarAgile

• Submit questions and comments via Twitter to
@acmeducation – we’re reading them!

• Use the Facebook and other sharing toolsin the bottom
panel to share this presentation with friends and
colleagues

5

Material copyright Bertrand Meyer, 2015

Based in part on the book Agile! The Good, the Hype and the Ugly
by Bertrand Meyer, Springer, 2014

Agile Methods:
The Good, the Hype and the Ugly

ACM Webinar,18 February 2015

Bertrand Meyer

Chair of
Software Engineering

6

7

Agile manifesto
.

8

Agile methods

Crystal

Lean

Scrum

XP Kent Beck

Mary Poppendieck

Alistair Cockburn

Schwaber & Sutherland

9

Topics

1 Key agile concepts
2 Assessment

Supplementary material: pitfalls in
assessing agile methods

10

.

 1

Key agile concepts

11

Twelve principles

We follow these principles:
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity — the art of maximizing the amount of work not done — is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly.

Source: Agile manifesto

Practice

Assertion

Practice

Assertion

Assertion

Wrong

Redundancy

Redundancy

What about
testing?

12

Finishing a design

It seems that the sole purpose of the work of engineers,
designers, and calculators is to polish and smooth out,
lighten this seam, balance that wing until it is no longer
noticed, until it is no longer a wing attached to a
fuselage, but a form fully unfolded, finally freed from
the ore, a sort of mysteriously joined whole, and of the same quality
as a poem.

It seems that perfection is reached, not when there is nothing more
to add, but when there is no longer anything to remove.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

13

Steve Jobs, 1998

That's been one of my
mantras — focus and
simplicity. Simple can be
harder than complex:
You have to work hard to
get your thinking clean to
make it simple.

But it's worth it in the end because once you get there, you can
move mountains.

14

Towards a better definition

Values

Principles

Practices:
 Managerial
 Technical

Artifacts

Agile methods

15

My view: agile values

 A New, reduced role for manager
 B No “Big Upfront” steps
 C Iterative development
 D Limited, negotiated scope
 E Focus on quality, achieved through testing

16

My view: agile principles

Organizational
 1 Put the customer at the center
 2 Accept change
 3 Let the team self-organize
 4 Maintain a sustainable pace
 5 Produce minimal software:

• 5.1 Produce minimal functionality
• 5.2 Produce only the product requested
• 5.3 Develop only code and tests

Technical
 6 Develop iteratively

• 6.1 Produce frequent working iterations
• 6.2 Freeze requirements during iterations

 7 Treat tests as a key resource:
• 7.1 Do not start any new development until all tests pass
• 7.2 Test first

 8 Express requirements through scenarios

17

Standard form for user stories

“As a <user_or_role>
I want <business_functionality>
so that <business_justification>”

Example:

“As a customer,
I want to see a list of my recent orders,
so that I can track my purchases with a company.”

Scrum

18

User stories (my view)

User stories requirement elicitation but not a fundamental
requirement technique. They cannot define the requirements:

 Not abstract enough
 Too specific
 Describe current processes
 Do not support evolution

User stories are to requirements what tests are to software
specification

Major application: for validating requirements

19

Additive and multiplicative complexity

20

Adding features

Historically, developers of telecommunication software have had trouble managing
feature interactions, causing runaway complexity, bugs, cost and schedule overruns,
and unfortunate user experiences. Other areas are also facing the problem.

Consider “busy treatments” in telephony, such as call forwarding, callee interruption,
delayed retry and voice mail. Suppose that we have a tool for specifying and
composing such features. Features can fail to come into action, even if their individual
description says they should, when they start interacting with other features :

 Bob has enabled the “call-forwarding” feature, to Carol. Carol has “do-not-
disturb”. Alice calls Bob: the call is forwarded to Carol; her phone rings.

 Alice calls a sales group. A sales-group feature forwards the call to the
salesperson on duty, Bob. His cellphone is off, so the caller gets Bob’s
personal Voice Mail message. It would be better to reactivate the sales-group
feature to find another salesperson.

Source: Zave*

*Abridged, see full citation in my book or original at
http://public.research.att.com/~pamela/faq.html

http://public.research.att.com/~pamela/faq.html
http://public.research.att.com/~pamela/faq.html

21

User stories (imagined)

(#1) As an executive, I want a redirection option so that if my
phone is busy the call is redirected to my assistant
…
(#5) As a system configurator, I want to be able to specify
various priorities for “busy” actions
..
(#12) As a salesperson, I want to make sure that if a prospect
calls while I am in a conversation, the conversation is
interrupted so that I can take the call immediately
…
(#25) As a considerate correspondent, I want to make sure that if
a call comes while my phone is busy I get to the option of calling
back as soon as the current call is over

22

6.2 Iterativeness: freeze requirements during iteration

The closed-window rule: during a sprint, no one may add
functionality

(or: the sprint is cancelled)

Scrum

23

Dual development

Early on: build infrastructure (horizontal, lasagne)

Later: produce releases

H
R W E I

Y
A

S TE ?P P I GN
E

24

Negotiated scope contract

“Write contracts for software development that fix time, costs,
and quality but call for an ongoing negotiation of the precise
scope of the system. Reduce risk by signing a sequence of short
contracts instead of one long one.

You can move in the direction of negotiated scope. Big, long
contracts can be split in half or thirds, with the optional part to
be exercised only if both parties agree. Contracts with high costs
for change requests can be written with less scope fixed up front
and lower costs for changes”

XP Source: Beck 05

25

. 2
The Ugly,
The Hype,
The Good

& The Brilliant:
An Assessment

26

The ugly

 Rejection of upfront tasks

 Particularly: no upfront requirements

 User stories as a replacement for abstract requirements

 Tests as a replacement for specifications

 Feature-based development & ignorance of dependencies

 Embedded customer

 Coach & method keeper (e.g. Scrum Master) as a separate role

 Test-driven development

 Dismissal of traditional manager tasks

 Dismissal of auxiliary products and non-shippable artifacts

 Dismissal of a priori concern for extendibility

 Dismissal of a priori concern for reusability

 Dismissal of a priori architecture work

27

The indifferent

 Pair programming
 Open-space working arrangements
 Self-organizing teams
 Maintaining a sustainable pace
 Producing minimal functionality
 Planning game, planning poker
 Cross-functional teams

28

The good

 Acceptance of change

 Frequent iterations

 Emphasis on working code

 Tests as one of the key resources of the project

 Constant test regression analysis

 No branching

 Product (but not user stories!) burndown chart

 Daily meeting

29

The brilliant

 Short iterations

 Closed-window rule

 Refactoring (but not as a substitute for design)

 Associating a test with every piece of functionality

 Continuous integration

30

31

.

 3

Assessment pitfalls
(supplementary material)

32

Rhetorical devices

 Unverifiable claims

 Proof by anecdote

 Slander by association

 Intimidation

 All-or-nothing

 Cover-your-behind

33

Unverifiable claims

34

Reminder: software engineering has laws

Example: Boehm, McConnell, Putnam, Capers Jones...

Nominal cost & time

Time

Cost

25%

35

Slander by association: Schwaber & Sutherland

 Although the predictive, or waterfall, process is in trouble,
many people and organizations continue to try to make it
work.

and later in the same paragraph:
 [A customer was using] services from

PricewaterhouseCoopers (PWC). The PWC approach was
predictive, or waterfall.

The book’s index entry for “Predictive process” reads “See
Waterfall ”

36

Catastrophism: Schwaber & Sutherland

“You have been ill served by the software industry for 40 years—
not purposely, but inextricably. We want to restore the
partnership.”

Also: every agile author cites the Standish report

37

CYA: the “although” style of agile explanations

Schwaber: Although project development teams are on their own, they are not
uncontrolled.
Cohn: Self-organizing teams are not free from management control. Management
chooses what product to build or often who will work on their project, but the teams
are nonetheless self-organizing. Neither are they free from influence. … That
being said, the fewer constraints or controls put on a team, the better.
A common misconception about agile project management approaches is that
because of this reliance on self-organizing teams, there is little or no role for leaders of
agile teams. Nothing could be further from the truth. In The Biology of Business,
Philip Anderson refutes this mistaken assumption:
“Self-organization does not mean that workers instead of managers engineer an
organization design. It does not mean letting people do whatever they want to do. It
means that management commits to guiding the evolution of behaviors that emerge
from the interaction of independent agents instead of specifying in advance what
effective behavior is.”
Self-organizing teams are not free from management control. Management chooses
for them what product to build or often chooses who will work on their project, but
they are nonetheless self-organizing. Neither are they free from influence. [...] That
being said, the fewer constraints or controls put on a team, the better.

38

CYA: Poppendieck

Final chapter, “Instructions and Warranty”
(chapter 8, pages 179-186)

Look for the balance point of the lean principles:

 Eliminate waste [chapter 3] does not
mean throw away all documentation

 Amplify learning [chapter 2] does not
mean keep on changing your mind

 Decide as late as possible [chapter 3] does not mean
procrastinate

 (etc.)

39

Beck, first edition

To some folks, XP seems like just good common sense. So why
the “extreme” in the name? XP takes commonsense principles
and practices to extreme levels:

 If code reviews are good, we’ll review code all the time
(pair programming)

 If testing is good, everybody will test all the time (unit
testing), even the customers (functional testing)

 If design is good, we’ll make it part of everybody’s daily
business (refactoring)

 …

40

CYA: Beck, second edition

There are better ways and worse ways to develop software. Good
teams are more alike than they are different. No matter how
good or bad your team you can always improve.

41

ACM: The Learning Continues…

Questions about this webcast? learning@acm.org

ACM Learning Webinars (on-demand archive):
 http://learning.acm.org/webinar

ACM Learning Center: http://learning.acm.org

ACM SIGSOFT: http://www.sigsoft.org/

ACM Queue: http://queue.acm.org/

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://www.sigsoft.org/
http://www.sigsoft.org/
http://queue.acm.org/
http://queue.acm.org/

	
	Where it came from
	Slide Number 3
	Slide Number 4
	
	
	Agile manifesto
	Agile methods
	Topics
	Slide Number 10
	Twelve principles
	Finishing a design
	Steve Jobs, 1998
	Towards a better definition
	My view: agile values
	My view: agile principles
	Standard form for user stories
	User stories (my view)
	Additive and multiplicative complexity
	Adding features
	User stories (imagined)
	6.2 Iterativeness: freeze requirements during iteration
	Dual development
	Negotiated scope contract
	Slide Number 25
	The ugly
	The indifferent
	The good
	The brilliant
	
	Slide Number 31
	Rhetorical devices
	Unverifiable claims
	Reminder: software engineering has laws
	Slander by association: Schwaber & Sutherland
	Catastrophism: Schwaber & Sutherland
	CYA: the “although” style of agile explanations
	CYA: Poppendieck
	Beck, first edition
	CYA: Beck, second edition
	ACM: The Learning Continues…

