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Why VoltDB is the solution to “Fast” 
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• Learning Center tools for professional development: http://learning.acm.org 
• 1,400+ trusted technical books and videos by O’Reilly, Morgan Kaufmann, etc. 
• Online training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, PMI, etc) 
• Learning Webinars from thought leaders and top practitioner 
• ACM Tech Packs (annotated bibliographies compiled by subject experts 
• Podcast interviews with innovators and award winners 

 
• Popular publications: 

• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/  
• ACM Queue magazine for practitioners: http://queue.acm.org/ 
 

• ACM Digital Library, the world’s most comprehensive database of computing literature: http://dl.acm.org. 
 

• International conferences that draw leading experts on a broad spectrum of computing topics: 
http://www.acm.org/conferences. 
 

• Prestigious awards, including the ACM A.M. Turing and ACM - Infosys Foundation Award: 
http://awards.acm.org/ 
 

• And much more…http://www.acm.org.     
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OUR SPEAKERS 

Dr. Mike Stonebraker of MIT 
Co-founder of VoltDB 

John Hugg 
Senior Software Engineer, VoltDB 
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OUTLINE 

 
• Characteristics of fast data 
• Non-workable solutions 
• VoltDB solution 
• Lambda architecture solution 
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FAST DATA 

• Comes from humans 
• State management in multi-player internet games 
• E.g., leaderboards 

• Comes from the Internet of Things (IoT) 
• Real-time geo-positioning 
• E.g., Waze 

• Comes from both 
•   E.g., stock market transactions  
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FAST DATA RATES 

• 10 messages (transactions) per second 
• Use you cell phone 

• 1,000 transactions per second 
• Use RDBMS (or whatever) 

• 100,000 transactions per second 
• Now it gets interesting… 

 
• From now on we will use “transaction” and “message” 

interchangeably 
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REQUIREMENTS FOR FAST DATA APPLICATIONS 
• Keep up 

• Obviously 
• And continue to do so when your load changes 

• Only game in town is “scale out” 
• Not “scale up” 

• Avoid pokey products 
• Product 1 executes 1,000 messages per core 
• Product 2 executes 25,000 messages per core 
• Difference between P1 and P2 on 100,000 messages per second 

is 4 cores versus 100 cores  
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REQUIREMENTS FOR FAST DATA APPLICATIONS 

• High level language 
• SQL! 
• Don’t want to code in “message assembler” 

• Augmented by windowing operations 
• E.g., moving average of IBM stock price every over last 

10 trades 
• So-called windowed aggregates 

9 



page © 2015 VoltDB 

REQUIREMENTS FOR FAST DATA APPLICATIONS 

• High availability (HA) 
• I don’t know anybody who will take down time these 

days 
• Requires a backup machine 

• And real-time failover 
• As well as restore on recovery 
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REQUIREMENTS FOR FAST DATA APPLICATIONS 

• Never lose my data 
• Unacceptable to lose my airline reservation 
• Or my standing on the leaderboard 

• Requires no data loss during failover 
• Unacceptable to drop transactions on the floor 
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REQUIREMENTS FOR FAST DATA APPLICATIONS 

• Data Consistency 
• Unacceptable to sell the last widget to multiple 

customers 
• Or do a money transfer, where only half of it gets done 
• Or produce an incorrect leaderboard 

• Requires standard ACID transactions 
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REQUIREMENTS FOR FAST DATA APPLICATIONS 
• Data Consistency for replicas 

• Unacceptable to sell the last widget to multiple 
customers during a node failure 

• Or do a money transfer, where only half of it gets done 
during a node failure 

• Requires standard ACID transactions 
• On replicas as well as data 
• Eventual consistency does not work! 
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NON-SOLUTIONS FOR FAST DATA 

• RDBMSs (Oracle, MySQL, …) 
• NoSQL (Cassandra, Mongo, …) 
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NON-SOLUTIONS FOR FAST DATA -- RDBMSS 

• Four major sources of overhead 
(assuming data sits in main memory) 
• Buffer pool overhead 
• Locking overhead 
• Write-ahead log overhead 
• Threading overhead 

• In aggregate these account for ~90% of 
the total time 
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NON-SOLUTIONS FOR FAST DATA -- RDBMSS 

• Slow, slow, slow, slow 
• Disk-based system (buffer pool overhead) 
• Record-level locking too expensive 
• Aries-style write ahead logging too expensive 
• Multi-threading latches are killing 

• Limited to a few thousand transactions per second 
• If you know you will never need to go faster, then this 

will work 
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NON-SOLUTIONS FOR FAST DATA -- NOSQL 

• Low level language (message assembler) 
• No ACID!!!! 
• Buffer pool and threading overhead still present 
• Worst of all worlds – low performance and low 

function 
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SOLUTIONS FOR FAST DATA  

• High performance main memory SQL-ACID 
DBMS (VoltDB, Hekaton, Hana, …) 

• Complex event processing engine (CEP) (Storm, 
Streambase, …) 
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EXAMPLE OPERATION ON FAST DATA 

• First hedge fund example 
• Find me a strawberry followed within 5 msec by a 

banana followed with 10 msec by a grape 
• Look for complex patterns in a fire hose 
• CEP is a natural here 
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EXAMPLE OPERATION ON FAST DATA 

• Second hedge fund example 
• In a worldwide trading system 
• Keep the global state on the enterprise 

• For or against every stock in real time (msecs) 

• And ring the red telephone if there is too much risk 
• And don’t lose any messages!!! 

• Sweet spot for SQL-ACID-main-memory  
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CHARACTERIZATION 

• CEP natural for “big pattern little state” applications 
• Main memory SQL natural for “big state little pattern” 

applications 
• Note that analytics applications are all in the second 

bucket 
• Anecdotal evidence that there are 3-4 big state problems 

for every big pattern problem 
• “an unnamed but reliable source” 
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VOLTDB SOLUTION 

• SQL plus windows 
• Main memory 
• Scale out on N nodes 
• Very high performance 

• Figure 40,000 messages/transactions per core 
per second 
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VOLTDB SOLUTION 

• ACID 
• With a lot of detailed trickery 

• ACID on local replicas 
• With more trickery 

• Optional ACID on remote replicas 
• Nobody is willing to pay the latency cost…. 
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VOLTDB FAST DATA  
DEMO 

John Hugg 
VoltDB Founding Engineering 
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The Lambda Architecture 
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LAMBDA OVERVIEW 
• Batch processing is well understood and robust. 

Latency is pretty horrific. 
• Stream processing is immediate. 

Complex and not as robust to hardware or user failure. 
 

• Lambda Architecture says do both in parallel to 
compensate. 

Speed Layer & Batch Layer 
26 
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EXAMPLE LAMBDA STACK 

Speed Layer 

Batch Layer 
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EXAMPLE PROBLEM 
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HOW MANY 
PEOPLE 
USED MY APP 
TODAY? 
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HOW MANY 
UNIQUE 
USERS 
INTERACTED 
WITH MY APP 
TODAY? 
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Open Cupcake Time 

App Identifier 
Unique Device ID 

appid = 87 
deviceid = 12 
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Open Cupcake Time 

App Identifier 
Unique Device ID 

appid = 87 
deviceid = 12 

The Lambda Architecture 
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1 MILLION  
 
APPID,DEVICEID  
 
PAIRS PER SECOND 
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Enter HyperLogLog 

A  method of estimating cardinality. 

blob = update(integer, blob) 

integer = estimate(blob) 

Fixed blob size. 

A few kilobytes to get 99% accuracy. 
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Open Cupcake Time 

App Identifier 
Unique Device ID 

appid = 87 
deviceid = 12 
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Open Cupcake Time 

App Identifier 
Unique Device ID 

appid = 87 
deviceid = 12 
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DECLARE SQL STATEMENTS 
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PARAMS ARE APP ID & DEVICE ID 
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GET ROW FOR THIS APP ID FROM STATE 
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CREATE A HYPERLOGLOG STRUCTURE FROM THE ROW 
OR CREATE A NEW HLL IF NO ROW 
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ADD THIS UNIQUE ID TO THE HLL STRUCTURE 
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UPDATE ROW WITH NEW HLL BYTES AND THE COMPUTED 
ESTIMATE 
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ADVANTAGES 
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LESS  
COMPLEX  
OPERATIONALLY 
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LESS CODE IN FEWER PLACES 

• HyperLogLog code is used entirely 
within one stored procedure. 

• Client uses SQL + simple schema for 
queries & reporting. 

Less  
Complex  
Development 

SELECT appid, devicecount  
FROM estimates  
ORDER BY devicecount DESC  
LIMIT 10; 
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DEMO 
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WANT TO CELEBRATE MIKE? 
Grab your commemorative Stonebraker Turing award t-shirt. 
 
For more details visit: 
 www.voltdb.com/stonebrakershirt 
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QUESTIONS? 

• Use the chat window to type in your questions 
• Try VoltDB yourself: 

 
 Free trial of the Enterprise Edition: 

• www.voltdb.com/download 
 

 Try VoltDB in the Cloud 
 http://voltdb.com/products/cloud  

 
 Try the “Unique Devices” app 

 https://github.com/VoltDB/voltdb/tree/master/examples/uniquedevices  
 

 Open source version of VoltDB is available on github.com 
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THANK YOU! 
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ACM: THE LEARNING CONTINUES… 

 
• Questions about this webcast? learning@acm.org 

 
• ACM Learning Webinars (on-demand archive):  
      http://learning.acm.org/webinar  
 
• ACM Learning Center: http://learning.acm.org 

 
• ACM SIGMOD: http://www.sigmod.org/  

 
• ACM Queue: http://queue.acm.org/  
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