
page

THE EXPERT GUIDE TO FAST DATA

1

Why VoltDB is the solution to “Fast”

page

• Learning Center tools for professional development: http://learning.acm.org
• 1,400+ trusted technical books and videos by O’Reilly, Morgan Kaufmann, etc.
• Online training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, PMI, etc)
• Learning Webinars from thought leaders and top practitioner
• ACM Tech Packs (annotated bibliographies compiled by subject experts
• Podcast interviews with innovators and award winners

• Popular publications:

• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/
• ACM Queue magazine for practitioners: http://queue.acm.org/

• ACM Digital Library, the world’s most comprehensive database of computing literature: http://dl.acm.org.

• International conferences that draw leading experts on a broad spectrum of computing topics:
http://www.acm.org/conferences.

• Prestigious awards, including the ACM A.M. Turing and ACM - Infosys Foundation Award:
http://awards.acm.org/

• And much more…http://www.acm.org.

ACM Highlights

http://learning.acm.org/
http://cacm.acm.org/
http://queue.acm.org/
http://dl.acm.org/
http://dl.acm.org/
http://www.acm.org/conferences
http://www.acm.org/conferences
http://awards.acm.org/
http://awards.acm.org/
http://www.acm.org/

page

THE EXPERT GUIDE TO FAST DATA

3

Why VoltDB is the solution to “Fast”

page © 2015 VoltDB

OUR SPEAKERS

Dr. Mike Stonebraker of MIT
Co-founder of VoltDB

John Hugg
Senior Software Engineer, VoltDB

page © 2015 VoltDB

OUTLINE

• Characteristics of fast data
• Non-workable solutions
• VoltDB solution
• Lambda architecture solution

page © 2015 VoltDB

FAST DATA

• Comes from humans
• State management in multi-player internet games
• E.g., leaderboards

• Comes from the Internet of Things (IoT)
• Real-time geo-positioning
• E.g., Waze

• Comes from both
• E.g., stock market transactions

6

page © 2015 VoltDB

FAST DATA RATES

• 10 messages (transactions) per second
• Use you cell phone

• 1,000 transactions per second
• Use RDBMS (or whatever)

• 100,000 transactions per second
• Now it gets interesting…

• From now on we will use “transaction” and “message”

interchangeably

7

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS
• Keep up

• Obviously
• And continue to do so when your load changes

• Only game in town is “scale out”
• Not “scale up”

• Avoid pokey products
• Product 1 executes 1,000 messages per core
• Product 2 executes 25,000 messages per core
• Difference between P1 and P2 on 100,000 messages per second

is 4 cores versus 100 cores

8

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS

• High level language
• SQL!
• Don’t want to code in “message assembler”

• Augmented by windowing operations
• E.g., moving average of IBM stock price every over last

10 trades
• So-called windowed aggregates

9

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS

• High availability (HA)
• I don’t know anybody who will take down time these

days
• Requires a backup machine

• And real-time failover
• As well as restore on recovery

10

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS

• Never lose my data
• Unacceptable to lose my airline reservation
• Or my standing on the leaderboard

• Requires no data loss during failover
• Unacceptable to drop transactions on the floor

11

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS

• Data Consistency
• Unacceptable to sell the last widget to multiple

customers
• Or do a money transfer, where only half of it gets done
• Or produce an incorrect leaderboard

• Requires standard ACID transactions

12

page © 2015 VoltDB

REQUIREMENTS FOR FAST DATA APPLICATIONS
• Data Consistency for replicas

• Unacceptable to sell the last widget to multiple
customers during a node failure

• Or do a money transfer, where only half of it gets done
during a node failure

• Requires standard ACID transactions
• On replicas as well as data
• Eventual consistency does not work!

13

page © 2015 VoltDB

NON-SOLUTIONS FOR FAST DATA

• RDBMSs (Oracle, MySQL, …)
• NoSQL (Cassandra, Mongo, …)

14

page © 2015 VoltDB

NON-SOLUTIONS FOR FAST DATA -- RDBMSS

• Four major sources of overhead
(assuming data sits in main memory)
• Buffer pool overhead
• Locking overhead
• Write-ahead log overhead
• Threading overhead

• In aggregate these account for ~90% of
the total time

15

page © 2015 VoltDB

NON-SOLUTIONS FOR FAST DATA -- RDBMSS

• Slow, slow, slow, slow
• Disk-based system (buffer pool overhead)
• Record-level locking too expensive
• Aries-style write ahead logging too expensive
• Multi-threading latches are killing

• Limited to a few thousand transactions per second
• If you know you will never need to go faster, then this

will work

16

page © 2015 VoltDB

NON-SOLUTIONS FOR FAST DATA -- NOSQL

• Low level language (message assembler)
• No ACID!!!!
• Buffer pool and threading overhead still present
• Worst of all worlds – low performance and low

function

17

page © 2015 VoltDB

SOLUTIONS FOR FAST DATA

• High performance main memory SQL-ACID
DBMS (VoltDB, Hekaton, Hana, …)

• Complex event processing engine (CEP) (Storm,
Streambase, …)

18

page © 2015 VoltDB

EXAMPLE OPERATION ON FAST DATA

• First hedge fund example
• Find me a strawberry followed within 5 msec by a

banana followed with 10 msec by a grape
• Look for complex patterns in a fire hose
• CEP is a natural here

19

page © 2015 VoltDB

EXAMPLE OPERATION ON FAST DATA

• Second hedge fund example
• In a worldwide trading system
• Keep the global state on the enterprise

• For or against every stock in real time (msecs)

• And ring the red telephone if there is too much risk
• And don’t lose any messages!!!

• Sweet spot for SQL-ACID-main-memory

20

page © 2015 VoltDB

CHARACTERIZATION

• CEP natural for “big pattern little state” applications
• Main memory SQL natural for “big state little pattern”

applications
• Note that analytics applications are all in the second

bucket
• Anecdotal evidence that there are 3-4 big state problems

for every big pattern problem
• “an unnamed but reliable source”

21

page © 2015 VoltDB

VOLTDB SOLUTION

• SQL plus windows
• Main memory
• Scale out on N nodes
• Very high performance

• Figure 40,000 messages/transactions per core
per second

22

page © 2015 VoltDB

VOLTDB SOLUTION

• ACID
• With a lot of detailed trickery

• ACID on local replicas
• With more trickery

• Optional ACID on remote replicas
• Nobody is willing to pay the latency cost….

23

page

VOLTDB FAST DATA
DEMO

John Hugg
VoltDB Founding Engineering

page © 2015 VoltDB

The Lambda Architecture

25

page © 2015 VoltDB

LAMBDA OVERVIEW
• Batch processing is well understood and robust.

Latency is pretty horrific.
• Stream processing is immediate.

Complex and not as robust to hardware or user failure.

• Lambda Architecture says do both in parallel to
compensate.

Speed Layer & Batch Layer
26

page © 2015 VoltDB

EXAMPLE LAMBDA STACK

Speed Layer

Batch Layer

27

page © 2015 VoltDB

EXAMPLE PROBLEM

28

page © 2015 VoltDB

HOW MANY
PEOPLE
USED MY APP
TODAY?

29

page © 2015 VoltDB

HOW MANY
UNIQUE
USERS
INTERACTED
WITH MY APP
TODAY?

30

page © 2015 VoltDB

Open Cupcake Time

App Identifier
Unique Device ID

appid = 87
deviceid = 12

31

page © 2015 VoltDB

Open Cupcake Time

App Identifier
Unique Device ID

appid = 87
deviceid = 12

The Lambda Architecture

32

page © 2015 VoltDB

1 MILLION

APPID,DEVICEID

PAIRS PER SECOND

33

page © 2015 VoltDB

Enter HyperLogLog

A method of estimating cardinality.

blob = update(integer, blob)

integer = estimate(blob)

Fixed blob size.

A few kilobytes to get 99% accuracy.

34

page © 2015 VoltDB

Open Cupcake Time

App Identifier
Unique Device ID

appid = 87
deviceid = 12

35

page © 2015 VoltDB

Open Cupcake Time

App Identifier
Unique Device ID

appid = 87
deviceid = 12

36

page © 2015 VoltDB

DECLARE SQL STATEMENTS

37

page © 2015 VoltDB

PARAMS ARE APP ID & DEVICE ID

38

page © 2015 VoltDB

GET ROW FOR THIS APP ID FROM STATE

39

page © 2015 VoltDB

CREATE A HYPERLOGLOG STRUCTURE FROM THE ROW
OR CREATE A NEW HLL IF NO ROW

40

page © 2015 VoltDB

ADD THIS UNIQUE ID TO THE HLL STRUCTURE

41

page © 2015 VoltDB

UPDATE ROW WITH NEW HLL BYTES AND THE COMPUTED
ESTIMATE

42

page © 2015 VoltDB

ADVANTAGES

43

page © 2015 VoltDB

LESS
COMPLEX
OPERATIONALLY

44

page © 2015 VoltDB

LESS CODE IN FEWER PLACES

• HyperLogLog code is used entirely
within one stored procedure.

• Client uses SQL + simple schema for
queries & reporting.

Less
Complex
Development

SELECT appid, devicecount
FROM estimates
ORDER BY devicecount DESC
LIMIT 10;

45

page © 2015 VoltDB

DEMO

46

page © 2015 VoltDB

WANT TO CELEBRATE MIKE?
Grab your commemorative Stonebraker Turing award t-shirt.

For more details visit:
 www.voltdb.com/stonebrakershirt

47

http://www.voltdb.com/stonebrakershirt

page © 2015 VoltDB

QUESTIONS?

• Use the chat window to type in your questions
• Try VoltDB yourself:

 Free trial of the Enterprise Edition:

• www.voltdb.com/download

 Try VoltDB in the Cloud
 http://voltdb.com/products/cloud

 Try the “Unique Devices” app

 https://github.com/VoltDB/voltdb/tree/master/examples/uniquedevices

 Open source version of VoltDB is available on github.com

48

http://www.voltdb.com/download
http://voltdb.com/products/cloud
https://github.com/VoltDB/voltdb/tree/master/examples/uniquedevices

page © 2015 VoltDB page

THANK YOU!

49

page

ACM: THE LEARNING CONTINUES…

• Questions about this webcast? learning@acm.org

• ACM Learning Webinars (on-demand archive):
 http://learning.acm.org/webinar

• ACM Learning Center: http://learning.acm.org

• ACM SIGMOD: http://www.sigmod.org/

• ACM Queue: http://queue.acm.org/

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://www.sigmod.org/
http://www.sigmod.org/
http://queue.acm.org/
http://queue.acm.org/

	The Expert Guide to Fast Data
	Slide Number 2
	The Expert Guide to Fast Data
	Our Speakers
	Outline
	Fast data
	Fast data rates
	Requirements for Fast Data Applications
	Requirements for Fast Data Applications
	Requirements for Fast Data Applications
	Requirements for Fast Data Applications
	Requirements for Fast Data Applications
	Requirements for Fast Data Applications
	Non-solutions for Fast Data
	Non-solutions for Fast Data -- RDBMSs
	Non-solutions for Fast Data -- RDBMSs
	Non-solutions for Fast Data -- NoSQL
	solutions for Fast Data
	Example Operation on Fast Data
	Example Operation on Fast Data
	Characterization
	Voltdb Solution
	Voltdb Solution
	VoltDB Fast Data �Demo
	Slide Number 25
	Lambda Overview
	Example Lambda Stack
	Example Problem
	How many people used my app today?
	How many unique users interacted with my app today?
	Slide Number 31
	Slide Number 32
	1 Million

AppId,DeviceID

Pairs Per Second
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Declare SQL statements
	Params are App ID & Device ID
	Get row for this App ID from state
	Create a HyperLogLog structure from the row
or create a new HLL if no row
	Add this unique id to the HLL structure
	Update row with new HLL bytes and the computed estimate
	Advantages
	Less
Complex
Operationally
	Less Code in Fewer Places
	Demo
	Want to Celebrate Mike?
	Questions?
	Thank you!
	ACM: The Learning Continues…

