
1

“Housekeeping”

Twitter: #ACMWebinarJudge

• Welcome to today’s ACM Webinar. The presentation starts at the top of the hour.

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key

on your keyboard in Windows, Command + R if on a Mac, or refresh your browser if you’re
on a mobile device; or close and re-launch the presentation. You can also view the Webcast
Help Guide, by clicking on the “Help” widget in the bottom dock.

• To control volume, adjust the master volume on your computer.

• If you think of a question during the presentation, please type it into the Q&A box and click
on the submit button. You do not need to wait until the end of the presentation to begin
submitting questions.

• At the end of the presentation, you’ll see a survey open in your browser. Please take a
minute to fill it out to help us improve your next webinar experience.

• You can download a copy of these slides by clicking on the Resources widget in the bottom
dock.

• This presentation is being recorded and will be available for on-demand viewing in the next
1-2 days. You will receive an automatic e-mail notification when the recording is ready.

 1

www.construx.com

Stranger than Fiction

Case Studies in Software
Engineering Judgment

3

• 1,400+ trusted technical books and videos by leading publishers
including O’Reilly, Morgan Kaufmann, others

• Online courses with assessments and certification-track mentoring,
member discounts on tuition at partner institutions

• Learning Webinars on big topics (Cloud/Mobile Development,
Cybersecurity, Big Data, Recommender Systems, SaaS, Agile, Machine
Learning, NLP, Hadoop, Parallel Programming, etc.)

• ACM Tech Packs on top current computing topics: Annotated
Bibliographies compiled by subject experts

• Popular video tutorials/keynotes from ACM Digital Library, A.M. Turing
Centenary talks/panels

• Podcasts with industry leaders/award winners

ACM Learning Center
http://learning.acm.org

3

4

“Housekeeping”

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key
on your keyboard in Windows, Command + R if on a Mac, or refresh your browser if you’re
on a mobile device; or close and re-launch the presentation. You can also view the Webcast
Help Guide, by clicking on the “Help” widget in the bottom dock.

• To control volume, adjust the master volume on your computer.

• If you think of a question during the presentation, please type it into the Q&A box and click
on the submit button. You do not need to wait until the end of the presentation to begin
submitting questions.

• At the end of the presentation, you’ll see a survey open in your browser. Please take a
minute to fill it out to help us improve your next webinar experience.

• You can download a copy of these slides by clicking on the Resources widget in the bottom
dock.

• This presentation is being recorded and will be available for on-demand viewing in the next
1-2 days. You will receive an automatic e-mail notification when the recording is ready.

4

5

Talk Back

• Use the Facebook widget in the bottom panel to
share this presentation with friends and
colleagues

• Use Twitter widget to Tweet your favorite quotes
from today’s presentation with hashtag
#ACMWebinarJudge

• Submit questions and comments via Twitter to
@acmeducation – we’re reading them!

5

Copyright Notice

These materials are © 2013-2015 Construx Software
Builders, Inc.

All Rights Reserved. No part of the contents of this
presentation may be reproduced or transmitted in any
form or by any means without the written permission of
Construx Software Builders, Inc.

7 Construx®

Roadmap

 Judgment (Bloom’s Taxonomy)
 Using The Four Factors Model to Support Judgment
 Case Studies in Applying Software Engineering

Judgment

Goal: Bring attention to a weak area in software
professionalism, and introduce a means of addressing it

Judgment

9 Construx®

Judgment and Bloom’s Taxonomy

Bloom’s Taxonomy
 Knowledge (Recall)
 Comprehension
 Application
 Analysis
 Synthesis (Create)
 Judgment (Evaluation)

10 Construx®

Bloom’s Taxonomy

 Most often used in educational settings for instruction
and assessment purposes

 Often described superficially or even flippantly, but a
genuine understanding of Bloom’s taxonomy, especially
the upper levels of the taxonomy, has profound
implications for software professionals

11 Construx®

Knowledge (Recall)

The remembering of previously
learned material

Examples in software engineering include:
 Recall book learning
 Recall personal experience
 Remember details of technical practices
 Recall patterns of practices
 Recall successes in design, code, test,

project management, and so on

12 Construx®

Comprehension

Grasping the meaning of material

Examples in software engineering include
 Summarize a methodology, e.g., Scrum
 Explain Scrum either in words or as a

diagram
 Describe an example of Scrum
 Explain why Scrum is not a design

approach
 Explain how Scrum is different

from Extreme Programming

This is the lowest level of Understanding

13 Construx®

Application

Use of knowledge to solve problems
in new and concrete situations

Examples in software engineering include
 Use general design knowledge to solve a specific design

problem
 Use general project planning knowledge to plan a specific

project
 Use general software construction knowledge to write a specific

piece of code

14 Construx®

Analysis

Breaking a problem into its parts so that its
relationships and organizational structure can
be understood

Examples in software engineering include
 Breaking a large class into two

smaller classes
 Breaking a class into methods

and data
 Allocating functionality and

data to methods within a class
 Finding flaws in a proposed design
 Finding the source of a coding error

15 Construx®

Let’s Dwell on Analysis for a Moment …

 This is also known as Critical Thinking
 We screen for Analysis skills as an entry criteria for

entering the programming profession
 Identifying the correct sequence of operations in a

section of code
 Identifying boundary conditions
 Etc.

 These are not common human skills
 Result: Most software professionals are really, really good

at Analysis

16 Construx®

More on Analysis

 Analysis is an over-developed muscle for many
technical staff
 “Developed” is fine
 “Over-developed” means out of balance with

Synthesis and Evaluation
 Over-developed Analysis skill can lead to Analysis

Paralysis
 Over-developed Analysis skill leads to excessive

focus on individual details (inability to see the
forest for the trees)

17 Construx®

Synthesis (Create)

Putting parts together to form a
new organization or whole that
requires original or creative thinking

Examples in software engineering include
 Combining two classes into a new class that provides an

interface at a different level of abstraction
 Making global vs. local tradeoffs in design of a system to create a

better overall design
 Assembling a team based on strengths and weaknesses of a

particular set of individuals
 Adjusting overall project plans based on progress of a set of

individual teams
Synthesis is one of the highest levels of Understanding

18 Construx®

More Comments about Synthesis

 This is also known as Creative Thinking
 This is a higher level skill, and not as many people are

good at it
 Technical people often discount the value of Synthesis,

e.g., technical staff’s skepticism of upper management,
which by its nature must be more focused on
Synthesis/Creation than on Analysis

 The software industry does a much better job of
recruiting for Analysis skill than for Synthesis/Creative skill

19 Construx®

Judgment (Evaluation)

Evaluate the value of ideas, concepts, principles
or solution methods for a given purpose

Like Synthesis, Evaluation is also one of the highest levels of
Understanding

20 Construx®

Judgment Applied to Bloom’s Taxonomy

Remember

Understand

Apply

Analyze

Create Evaluate

Create

Knowledge

Comprehension

Application

Analysis

Create Synthesis

Evaluation

1956 2001

Noun Verb

21 Construx®

More Comments About Judgment (Evaluation)

Evaluate (Judgment)
depends on Knowledge,
Comprehension,
Application, Analysis, and
Create (Synthesis)

Create (Synthesis) depends
on Knowledge,
Comprehension,
Application, Analysis, and
Evaluate (Judgment)

22 Construx®

Examples of Judgment in Software Engineering

 Choose the better of two technology paths
 Choose the best of three design approaches
 Justify a re-architecture project
 Choose which proposed projects best support a

business’s objectives
 Assess the degree to which a new methodology will

benefit an organization (or harm it)
 Predict likelihood of success of a project plan
 Conduct root cause Analysis on a failed project

23 Construx®

Difference Between Analysis and
Judgment

Analysis is the ability to go very far down the decision tree,
along multiple paths

24 Construx®

Difference Between Analysis and
Judgment

Judgment is the ability to choose the right path
For example, any of the
options on the right are
better than any of the

options on the left
because of the very

first decision

25 Construx®

Struggles with Judgment

Technical people often struggle with the idea in some
cases further analysis doesn’t matter, i.e., ignoring details

?

26 Construx®

Analysis in Software is Often Mistaken for
Judgment

Criticism (Analysis) in software is often mistaken for
Judgment
 Criticize each of two technology paths
 Find faults in three design approaches
 Identify limitations of current system to justify a re-

architecture project
 Advocacy for projects doesn’t get past advocacy of

one favored project
 Assessment of a new methodology amounts to a

religious advocacy for one methodology
 Assessment of project plans focuses on minutia
 Root cause analysis on a failed project consists of

rehashing unpopular decisions

27 Construx®

Judgment in Software Engineering

 Judgment capability is even rarer than Synthesis
capability

 We hardly screen for Judgment in software staff at all
 E.g., Microsoft’s famous interview questions are nearly

all about Synthesis (and that is higher on Bloom’s
Taxonomy than typical interview questions)

 Poor Business Judgment is so common among technical
staff that it is a cliché

 The $64 question is, How do we Develop Good
Judgment in Software Professionals?

The Four Factors
Model

29 Construx®

Four Factors Model
Introduced at Construx Software Executive Summit 2013

Size Uncer-
tainty

Defects Human
Variation

30 Construx®

Four Factors

SIZE (diseconomy of scale; failure rate; specializations; mix of activities)

UNCERTAINTY (intellectual phases; cone of uncertainty; feature
staircase vs. feature buildup; risk management; effort vs. certainty curve)

DEFECTS (DCI, defect detection lag, defect removal techniques in
series, relationship to process stability)

HUMAN VARIATION (effect on research; effect on selection of
methods (familiar vs. unfamiliar); effect on team composition, team
cohesion, recruiting, and retention; focus on perfect execution vs. perfect
plans; implication for favoring robust methods)

31 Construx®

The Four Factors and Judgment

 The Four Factors model provides a set of Templates
against which we compare what we see on a
project vs. what we would expect to see, and that
supports Judgment

 For example, we could create checklists based on
the four factors …

32 Construx®

Size Checklist 1/2

 Is the project estimated close to its actual size?
 Does the project’s schedule permit completion of a

project of the estimated effort?
 Is the project planned at a level commensurate with its

size?
 Does the project have appropriate allocation of

activities for its size?
 Does the project have appropriate staff specializations

for its size?
 Does the project have appropriate levels of

management for its size?

33 Construx®

Size Checklist 2/2

 Does the project have QA practices appropriate for its
size?

 Is the project appropriate addressing the factors that
scale disproportionately with size (Precedentedness,
Process Maturity, Risk Resolution, Requirements Flexibility,
Team Cohesion, per Cocomo)?

34 Construx®

Uncertainty Checklist 1/2

 Do the project’s estimates and plans account for the
Cone of Uncertainty?

 Where will the project’s challenges come from in terms
of the Intellectual Phase Profiles?

 Is requirements uncertainty addressed and
manageable?

 Is design uncertainty addressed and manageable?
 Is technology uncertainty addressed and manageable?
 Is the degree of precedentedness manageable for the

size of the project?
 Is planning uncertainty addressed and manageable?

35 Construx®

Uncertainty Checklist 2/2

 Is the project striking an appropriate balance between
time allocated for proactive activities vs. time allocated
for reactive activities?

 Is risk management in place and appropriate for the size
of the project?

 Is the overall level of uncertainty manageable for the
size of the project?

36 Construx®

Defect Checklist 1/1

 Is the project using practices that will minimize the gap
between defect insertion and defect detection?

 Is the series of defect removal practices capable of
producing the desired level of quality?

 Is the series of defect removal practices efficient in
achieving the desired level of quality?

 Are the quantity and kinds of defect removal
appropriate for the size of the project?

 Are the quantity and kinds of defect removal
appropriate for the quantity and kind of uncertainty on
the project?

 Are the quantity and kinds of defect removal
appropriate for the capabilities of the people working on
the project?

37 Construx®

Human Variation Checklist 1/2

 Do the people on the project have the skills to complete
a project of the intended size?

 Do the people on the project have the skills to complete
a project with this project’s uncertainty characteristics?

 Do the people on the project have the skills to complete
a project with this project’s intended quality level?

 Is the requirements skill level matched to both with the
size of the project and degree of challenge in the
requirements area?

 Is the design/architecture skill level matched to both with
the size of the project and degree of challenge in the
design area?

 Is the project management skill and experience
matched to the project size and overall challenge?

38 Construx®

Human Variation Checklist 2/2

 What is the motivation level of the people on the
project?

 Does the level of staff turnover support a project of the
intended size?

 Do staff capabilities support the human/staff
organization of the project, including geographic
distribution?

 Is the staff’s experience in the business area suitable for
the size, uncertainty level, and desired quality level of
the project?

 Is the staff’s experience in the technology platform
suitable for the size, uncertainty level, and desired quality
level of the project?

39 Construx®

Simplified Application of the
Checklists in this Talk

C e
St es

Case
Studies

41 Construx®

Value of Case Studies

 A deep understanding of the Four Factors supports
dramatically better Software Engineering Judgment
than we usually see

 Understanding of the Four Factors supports
Synthesis/Creative (in the Bloom’s taxonomy sense)
in planning and management too

 Case studies provide experience recognizing
patterns, and developing and applying Judgment

Healthcare.gov
2013

43 Construx®

Healthcare.gov Background

 Affordable Care Act passed December 2009, signed into
law in March 2010

 Private sector development contracts awarded in 2011
 Original project budget was about $100 million
 Coding by CGI (prime contractor) began in Spring 2013

for October 1, 2013 “go live” date
 Cost by the time the system went live was almost $300

million
 When the system went live it was plagued by slow

performance, down time, lost data, incomplete
functionality, and other problems—one estimate was
that only 1% of people were able to use the site as
intended at first

44 Construx®

How Did the People Involved with
Healthcare.gov Diagnose the Problems?

45 Construx®

Other Details About Healthcare.gov

“… they had just two weeks to test the site before all
the pieces from several contractors had to work
together the day of the launch.”

“We all know we were working under a compressed
time frame to launch this on Oct. 1”

“Determining many of the problems the system would
have after the various parts were integrated was
difficult until the site actually went online, Bataille
said. It was the agency’s responsibility to make sure
all the parts worked together.”

“The technology is there to do that. It just
requires foresight.”

As late as the last week of September,
officials were still changing features of the
Web site, HealthCare.gov, and debating

whether consumers should be required to
register and create password-protected

accounts before they could shop for health
plans.

46 Construx®

The Four Factors Model Applied to
Healthcare.gov in 2013

Size

Uncertainty

Defects

Human
Variation ?

• Short schedule
• Huge budget
• Huge staff ramp-up
• Planning not matched to project size

• Numerous immoveable
requirements (laws)

• Massive requirements changes
• Significant unprecedentedness

• Approach to QA not matched to
size of project or nature of
uncertainty

• Does not matter!

47 Construx®

Update: GAO Report July 2014

Healthcare.gov suffered from
 Rushed schedule
 Changing requirements
 Lax oversight of contractors
 Lack of effective planning and oversight practices

Evaluation in the July 2014 GAO Report is substantially
similar to the evaluation I gave in November 2013 (at
Construx’s 2013 Software Executive Summit) just from
reading the newspaper

I believe anyone can do this if they understand the Four
Factors Model

COVER
OREGON

49 Construx®

COVER OREGON Background

 In 2011 Oregon decided to develop its own state-level
health exchange rather than use the Federal government’s
healthcare.gov

 Work began on COVER OREGON in 2012, for an October 1,
2013 “go live” date

 Oregon contracted with Oracle to develop the exchange
 The State of Oregon received $300 million in Federal Grant

money to develop the site (vs. $100 million planned for
healthcare.gov …)

 The exchange was still not working in December 2013, and
Oregon reassigned 500 staff to process paper applications

 By April 2014 the exchange was still not working; COVER
OREGON was closed, and Oregon adopted
healthcare.gov beginning in 2015

50 Construx®

To date, Cover Oregon has signed
up more than 63,000 people for

private insurance, which generates
a per-member per-month fee of

$9.38 for the exchange.

April 22, 2014

So far, Cover Oregon and OHA
have spent two thirds of that

money on the exchange, which
amounts to $199,199,688

April 24, 2014

COVER OREGON Business Judgment
(Bad Judgment is not Limited to Software Professionals!)

They are getting $9.38 / month / enrollee $3,162 per enrollee / $9.38 per month, means payoff will
 require 337 months (28 years!)

$199,199,688 / 63,000 = $3,162 per enrollee
(that’s just to access the exchange, no actual healthcare included!)

Except that these people were signed up on paper,
i.e., didn’t actually use the exchange!

51

Reported Problems with COVER OREGON

 “Code quality is sub-par”
 “No impact analysis prior to

coding”
 No peer review
 “Details on software-

check-out/check-in and
merge processes are
lacking”

 “Build process seems
vague and not well
defined”

 “No skilled software
development engineering
manager”

 Status reporting “Lacks basic
information including number of
calendar days and man-days
required for project completion”

 “Poor design”
 “Even worse code”
 “The quality of work was

atrocious”
 “They broke every single

development best practice that
Oracle themselves have
defined”

 “OHA and Cover Oregon lacked
the skills, knowledge or ability to
be successful”
 Source: KATU .com website, April 24, 2014

52 Construx®

The Four Factors Model Applied to
COVER OREGON

Size

Uncertainty

Defects

Human
Variation

• Huge budget
• Huge staff ramp-up
• No aspect of development matched to

project size (management, design,
construction, CM, test, etc.)

• Massively under skilled

• Zero meaningful QA practices in
evidence

? • Doesn’t matter

53 Construx®

Large-Grain Decisions Were Wrong

54 Construx®

“The 1980s are Calling; They Want Their
Project Back”

 The problems on this project were so conspicuous that
the case study seems almost contrived to make a
point—but it is not

 You would think we would have learned these lessons
decades ago, but this project was still ongoing less than
one year ago

55 Construx®

Aren’t the Problems with this Project
Obvious?

 Made to Stick describes the Curse of Knowledge
 I’ve been doing this for a long time
 The more time goes by, the more difficulty I have

knowing what is obvious to other people and what is not
 The problems with this project seem obvious to me
 Yet … this project was allowed to go wrong, by

intelligent people, with multiple levels of oversight, to the
tune of $200 million

56 Construx®

Commonalities with Other Case Studies

 The problem was not absence of analysis, not subtle
miscalculations, not subtle errors in judgment, but Gross
Errors in Judgment

 We’re asking the wrong question:
“What went wrong with this project?”

The right question is,
“Why did Anyone—Ever—think this project would be
successful?”

“Train Wreck” “Train Wreck”

58 Construx®

Train Wreck Chronology

The Scene: In Seattle, a traditional "brick and
mortar" parts company (“The Client”)
decides it wants to take its business
online. It does not have any software
development capability, so it decides
to outsource

It raises $1.7M in investment capital,
identifies a high-flying internet company
that it would like to work with ("The
Contractor"), and the project begins.

59 Construx®

Train Wreck Chronology

January Contract Negotiations
$1.7M startup capital
4-5 month delivery schedule

January SOW Signed
Contractor bid in 2 phases, with expectation
that $1.7M budget for the total project was
achievable
Project start of March 18
Contractor would use RUP--The Rational
Unified Process

60 Construx®

Train Wreck Chronology

March "Inception Phase“

"Inception" would be followed by Elaboration,
Construction, and Transition in Phase 2

Deliverables were Requirements (via Use Cases) and
Architecture
30 days – planned completion of Inception Phase on
April 18
$400,000

Billing rates range from $150-$700/hour

Nearly all client staff is based in Chicago and spends
Monday mornings and Friday afternoons on airplanes

61 Construx®

Train Wreck Chronology

April Declared done with "Inception" phase

Initial Bid for "Elaboration Phase" (not including
Construction or Transition phases) of $1.3 million
This will consume the client’s entire budget,
before getting to Construction
Contract Negotiations begin

62 Construx®

Train Wreck Chronology

May Budget for remainder of project of $1.7M (total of $2.1M) +
Client gives up a 15% Equity stake in their company
Plan of ~50 staff months of work (in less than 3 calendar
months)
Planned live launch on July 11
Short schedule justified because this is an Integration project,
not a custom build

May SOW Signed
Inception team staff leaves; Elaboration team staff begins
Began Working on Elaboration
Finished creating Use Cases, which amounted to 17 3” 3-ring
binders
Announced 1-week schedule slip on 5/5
Announced 3.5-week schedule slip on 5/26

63 Construx®

Train Wreck Chronology

June Announced 1-week schedule slip on 6/2 (now out to 7/18)

Elaboration team staff leaves; Implementation team staff
begins

Staff turnover exceeds 200% (i.e., 3 people for each job) in
less than 6 months

Implementation team found that the primary tool used for
integration was very immature, undocumented, and buggy ...
making the customization and future modifications longer
than expected.

Implementation team finds the 17 3-ring binders of Use Cases
not comprehensible

Implementation team concludes that schedule goals cannot
be met with the RUP approach

Team switches from RUP to Extreme Programming

64 Construx®

Train Wreck Chronology

July Announced 3-week schedule slip on 7/29 (to 8/11)

Team begins interviewing client about, “What is the most
important story you'd like us to work on this week?”

Client responds, “We want everything that’s enumerated
in those 17 3-ring binders”

Team trims many aspects of Extreme Programming
because there isn't enough time to do them.

65 Construx®

Train Wreck Chronology

August An internal Contractor document states it was impossible
to build this system in 3 months
Contractor presents a change order to Client saying it
needs more money to finish the project

Client begins refusing payment of Contractor's invoices

66 Construx®

Train Wreck Chronology

September September SOW Signed
Client agrees to additional budget for project of
$700,000 (total of $2.8M)

Client agrees to pay past invoices

Contractor agrees to language that states if
Contractor misses its final delivery, Contractor must
refund ALL fees for the project (including January
and May SOW fees)

67 Construx®

Train Wreck Chronology

October Status is fuzzy; client refuses payment based on
missed deliveries

November Status is fuzzy; client refuses payment based on
missed deliveries

December Contractor sues client, saying it was on track and
client owes it fees for past work

Client counter-sues Contractor saying all its prior fees
should be refunded due to missed goals

68 Construx®

Train Wreck Chronology

July
(year 2)

I get involved as expert witness

September
(year 2)

Case settles; client recovers $150,000 (of $2.8 million)

December
(year 2)

Client goes out of business

January
(year 3)

Contractor acquired by another company for
pennies a share (essentially goes out of business)

69 Construx®

Opposing Expert Witness’s Summary

“There were deficiencies in project
management, software construction,
software design, software configuration
management, estimation, software quality
assurance, and software testing practices …”

That was from The Contractor’s expert!

70 Construx®

The Four Factors Model Applied to
the Train Wreck Project

Size

Uncertainty

Defects

Human
Variation

• Not a terribly large project
• Underscoped

• Almost incomprehensible failure to
account for human variation in
ability to apply RUP vs. XP

• Pretty good upfront practices with
RUP and Use Case analysis

• There was some technology
uncertainty

• All the other uncertainty was
introduced by the project
team itself

71 Construx®

I Only Need to Know One Thing About This
Project to Predict the Outcome

Decision to switch from
one set of people

using RUP to a different
set of people using XP

72 Construx®

Commonalities with Other Case Studies

 Again, there is nothing subtle about what went wrong
with this project

 As with COVER OREGON and Healthcare.gov, there is
plenty of blame to go around

 In cases like this, often both parties are at fault
 I like the legal concept of Joint and Several Liability
 I often find it more useful to adopt the frame of mind,

“Assume the project will fail and prove to me that it
will work” rather than “Assume it will work and prove
that it will fail”

Chrysler C3 Project
(Original Extreme
Programming Project)

74 Construx®

Chrysler C3 Project Background
(The XP Poster Project)

 Chrysler wanted to replace disparate legacy COBOL payroll
systems with one system

 Project did not make much progress from 1993-1995
 In 1996, Kent Beck was hired to build the system; he in turn

hired Ron Jeffries
 Kent and Ron implemented pair programming, continuous

integration, onsite customer, unit testing, refactoring, YAGNI—
all the practices that became Extreme Programming

 Initial release was 2 months late on a 12 month schedule,
which the team considered to be “basically on time”

 Progress for the next few years was mixed and characterized
by “just one more requirement” syndrome

 Further releases were halted when Daimler bought Chrysler in
2000

75 Construx®

The Four Factors Model Applied to
the Chrysler C3 Project

Size

Uncertainty

Defects

Human
Variation

• Small project
• Planned scope pretty close to real scope

• Payroll is a well-understood
area

• Some uncertainty from the
panoply of legacy systems

• Practices for removing defects
were reasonable, and matched
to project size

• This is not a high-defect-potential
project in the first place

• Kent Beck!
• Ron Jeffries!

76 Construx®

Chrysler C3 Project

 Based on the Four Factors model, what surprises me
about the Chrysler C3 project?

NOTHING!
 There is certainly no “XP Secret Sauce” that I would

consider significant on the C3 project
 “Why did anyone ever think this project would be

successful?”
 To me, the lesson of the Chrysler C3 project is not

about Extreme Programming.
 The lesson is, “If you pay attention to the needs of the

project, and plan and execute accordingly, the
project will be successful.”

Cheyenne
Mountain
ATAMS

78 Construx®

ATAMS Context

 The US Air Force’s Cheyenne Mountain Upgrade project
(CMU) was originally scheduled to last 6 years and cost
$968M

 Thirteen years later the GAO estimated that CMU was $1
billion over budget and 11 years behind schedule

 The new systems that had been completed were not
usable

79 Construx®

ATAMS Background

Against this backdrop …
 CMU managers commissioned Kaman Sciences to

conduct the ATAMS project
 Goal: replace displays on 20 monitors with just two and

improve response time
 Project Constraints: Schedule of one year and budget of

$2 million

80 Construx®

ATAMS Background

 Kaman Sciences appointed an experienced project
manager

 Development was conducted by 11-person, intact
development team

 The team extensive prototyped the Ux
 User demands turned a 2-message, 4-display system into

a 57-message, 35-display system
 This was discovered during prototyping

 The team tackled the riskiest elements first
 Design reviews caught more than 200 major defects and

500 minor defects at design time at a cost of slightly less
than 1 staff hour per defect found

81 Construx®

ATAMS Background

 Root cause analysis was performed for each defect
found

 Technical peer reviews continued throughout the
project

 Active management was conducted to ensure that peer
reviews were performed in a timely way

 Team adopted a standard of perfecting each
component before moving on to the next component

 Project status and tasks status were displayed in a
graphic format that anyone could understand

 Project management used status information to seek out
project risks and address them

82 Construx®

ATAMS Results

 Delivered 1 month early on a 12 month schedule
 Only 2 defects found within first 16 months of operation

83 Construx®

The Four Factors Model Applied to
Cheyenne Mountain ATAMS

• Small project (11 people)
• Short schedule (1 year)

• Significant requirements
changes, but discovered early

• Project actively attacked
uncertainty in requirements,
quality, and project plans

• Early requirements defect
detection through prototyping

• Thorough reviews
• Focus on maintaining high quality
• High discipline

Size

Uncertainty

Defects

Human
Variation

• Skilled project team
• Skilled management
• Intact team

84 Construx®

ATAMS Summary

Compare to commonalities from other projects we’ve
seen:

 “People on the project seem unable to identify even

basic dynamics on their own projects, even in
hindsight?”

 There was an awareness of risk and explicit steps

taken to address risks

85 Construx®

ATAMS Summary

Compare to commonalities from other projects we’ve
seen:

 “Why did anyone ever think this project would be

successful?”

 Lots of reasons for this project to be successful

86 Construx®

ATAMS Summary

Compare to commonalities from other projects we’ve
seen:

 “Problems are not subtleties, but gross errors in

judgment”?

 There were no gross errors in judgment

 Causes of success in this project seem as conspicuous

as causes of failure did on the other projects

Summary

88 Construx®

Summary

 Most of what I have described today seems obvious to
me (the Curse of Knowledge)

 However, one common theme in the failed projects is
that basic project dynamics were not obvious to the
people involved in these projects, even highly intelligent
people, often even in hindsight

 How can people who are so smart make such bad
decisions?

 Software professionals tend to be very strong in Analysis,
so deficiency in Analysis does not seem to be the
problem

89 Construx®

Summary

 Deficiency in Judgment, even Gross Errors in Judgment
are common in software

 A focus on Developing Judgment in software
professionals is important, perhaps more important than in
professions that do not select so strongly for Analysis skills

Construx Software is committed to helping
individuals and organizations improve their
software development practices. For information
about our training and consulting services, contact
stevemcc@construx.com
+1(425) 636-0100

10900 NE 8th Street, Suite 1350
Bellevue, WA 98004
+1 (866) 296-6300
www.construx.com

mailto:stevemcc@construx.com

END

92

ACM: The Learning Continues…

 Questions about this webcast? learning@acm.org

 ACM Learning Webinars (on-demand archive):
 http://learning.acm.org/webinar

 ACM Learning Center: http://learning.acm.org

 ACM SIGSOFT: http://www.sigsoft.org/

 ACM Queue: http://queue.acm.org/

92

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://www.sigsoft.org/
http://www.sigsoft.org/
http://queue.acm.org/
http://queue.acm.org/

	Slide Number 1
	Stranger than Fiction��Case Studies in Software Engineering Judgment
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Copyright Notice���These materials are © 2013-2015 Construx Software Builders, Inc. ��All Rights Reserved. No part of the contents of this presentation may be reproduced or transmitted in any form or by any means without the written permission of Construx Software Builders, Inc.
	Roadmap
	Judgment
	Judgment and Bloom’s Taxonomy
	Bloom’s Taxonomy
	Knowledge (Recall)
	Comprehension
	Application
	Analysis
	Let’s Dwell on Analysis for a Moment …
	More on Analysis
	Synthesis (Create)
	More Comments about Synthesis
	Judgment (Evaluation)
	Judgment Applied to Bloom’s Taxonomy
	More Comments About Judgment (Evaluation)
	Examples of Judgment in Software Engineering
	Difference Between Analysis and Judgment
	Difference Between Analysis and Judgment
	Struggles with Judgment
	Analysis in Software is Often Mistaken for Judgment
	Judgment in Software Engineering
	The Four Factors Model
	Four Factors Model�Introduced at Construx Software Executive Summit 2013
	Four Factors
	The Four Factors and Judgment
	Size Checklist 1/2
	Size Checklist 2/2
	Uncertainty Checklist 1/2
	Uncertainty Checklist 2/2
	Defect Checklist 1/1
	Human Variation Checklist 1/2
	Human Variation Checklist 2/2
	Simplified Application of the �Checklists in this Talk
	Case �Studies
	Value of Case Studies
	Slide Number 42
	Healthcare.gov Background
	How Did the People Involved with Healthcare.gov Diagnose the Problems?
	Other Details About Healthcare.gov
	The Four Factors Model Applied to Healthcare.gov in 2013
	Update: GAO Report July 2014
	Slide Number 48
	COVER OREGON Background
	COVER OREGON Business Judgment�(Bad Judgment is not Limited to Software Professionals!)
	Reported Problems with COVER OREGON
	The Four Factors Model Applied to �COVER OREGON
	Large-Grain Decisions Were Wrong
	“The 1980s are Calling; They Want Their Project Back”
	Aren’t the Problems with this Project Obvious?
	Commonalities with Other Case Studies
	Slide Number 57
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Train Wreck Chronology
	Opposing Expert Witness’s Summary
	The Four Factors Model Applied to �the Train Wreck Project
	I Only Need to Know One Thing About This Project to Predict the Outcome
	Commonalities with Other Case Studies
	Slide Number 73
	Chrysler C3 Project Background �(The XP Poster Project)
	The Four Factors Model Applied to �the Chrysler C3 Project
	Chrysler C3 Project
	Slide Number 77
	ATAMS Context
	ATAMS Background
	ATAMS Background
	ATAMS Background
	ATAMS Results
	The Four Factors Model Applied to �Cheyenne Mountain ATAMS
	ATAMS Summary
	ATAMS Summary
	ATAMS Summary
	Summary
	Summary
	Summary
	Slide Number 90
	END
	ACM: The Learning Continues…

