
Making Big Data Processing
Simple with Spark

Matei Zaharia
December 17, 2015

What is Apache Spark?

Fast and general cluster computing engine that
generalizes the MapReduce model

Makes it easy and fast to process large datasets
• High-level APIs in Java, Scala, Python, R
• Unified engine that can capture many workloads

A Unified Engine

Spark

Spark
Streaming

real-time

Spark SQL
structured data

MLlib
machine
learning

GraphX
graph

0
20
40
60
80

100
120
140
160

2010 2011 2012 2013 2014 2015

Co
nt

rib
ut

or
s

Contributors / Month to Spark

A Large Community

Most active open source project for
big data

Overview

Why a unified engine?

Spark programming model

Built-in libraries

Applications

History: Cluster Computing
2004

A general engine for batch processing

MapReduce

Beyond MapReduce

MapReduce was great for batch processing, but
users quickly needed to do more:
• More complex, multi-pass algorithms
• More interactive ad-hoc queries
• More real-time stream processing

Result: specialized systems for these workloads

MapReduce

Pregel

Dremel

Presto

Storm

Giraph

Drill

Impala

S4 . . .

Specialized systems
for new workloads

General batch
processing

Big Data Systems Today

Problems with Specialized Systems

More systems to manage, tune, deploy

Can’t easily combine processing types
• Even though most applications need to do this!
• E.g. load data with SQL, then run machine learning

In many cases, data transfer between engines is a
dominant cost!

MapReduce

Pregel

Dremel

Presto

Storm

Giraph

Drill

Impala

S4

Specialized systems
for new workloads

General batch
processing

Unified engine

Big Data Systems Today

?
. . .

Overview

Why a unified engine?

Spark programming model

Built-in libraries

Applications

Background

Recall 3 workloads were issues for MapReduce:
• More complex, multi-pass algorithms
• More interactive ad-hoc queries
• More real-time stream processing

While these look different, all 3 need one thing
that MapReduce lacks: efficient data sharing

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication and disk I/O

iter. 1 iter. 2 . . .

Input

What We’d Like

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100x faster than network and disk

Spark Programming Model

Resilient Distributed Datasets (RDDs)
• Collections of objects stored in RAM or disk across cluster
• Built via parallel transformations (map, filter, …)
• Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines	=	spark.textFile(“hdfs://...”)	

errors	=	lines.filter(lambda	s:	s.startswith(“ERROR”))	

messages	=	errors.map(lambda	s:	s.split(‘\t’)[2])	

messages.cache()	
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda	s:	“MySQL”	in	s).count()	

messages.filter(lambda	s:	“Redis”	in	s).count()	

.	.	.	

tasks

results
Cache 1

Cache 2

Cache 3

Base RDD Transformed RDD

Action

Example: full-text search of Wikipedia
in 0.5 sec (vs 20s for on-disk data)

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
 .reduceByKey(lambda x, y: x + y)
 .filter(lambda (type, count): count > 10)

filter reduce map

In
pu

t f
ile

RDDs track lineage info to rebuild lost data

filter reduce map

In
pu

t f
ile

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
 .reduceByKey(lambda x, y: x + y)
 .filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data

Example: Logistic Regression

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 10 20 30

Ru
nn

in
g

Ti
m

e
(s

)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s
further iterations 1 s

Source: Daytona GraySort benchmark, sortbenchmark.org

2100 machines 2013 Record:
Hadoop

72 minutes

2014 Record:
Spark

207 machines

23 minutes

On-Disk Performance
Time to sort 100TB

Libraries Built on Spark

Spark

Spark
Streaming

real-time

Spark SQL
structured data

MLlib
machine
learning

GraphX
graph

// Load data using SQL
points = ctx.sql(“select latitude, longitude from tweets”)

// Train a machine learning model
model = KMeans.train(points, 10)

// Apply it to a stream
sc.twitterStream(...)
 .map(lambda t: (model.predict(t.location), 1))
 .reduceByWindow(“5s”, lambda a, b: a + b)

Combining Processing Types

Combining Processing Types

Separate systems:

. . .

HDFS
read

HDFS
write ET

L HDFS
read

HDFS
write tr

ai
n HDFS

read
HDFS
write qu

er
y

HDFS
write

HDFS
read ET

L
tr

ai
n

qu
er

y

Spark:

H
iv

e
Im

pa
la

 (d
is

k)

Im
pa

la
 (m

em
)

Sp
ar

k
(d

is
k)

Sp

ar
k

(m
em

)

0

10

20

30

40

50

Re
sp

on
se

 T
im

e
(s

ec
)

SQL

M
ah

ou
t

Gr
ap

hL
ab

Sp

ar
k

0

10

20

30

40

50

60

Re
sp

on
se

 T
im

e
(m

in
)

ML

Performance vs Specialized Systems

St
or

m

Sp
ar

k
0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)

Streaming

Some Recent Additions

DataFrame API (similar to R and Pandas)
• Easy programmatic way to work with structured data

R interface (SparkR)

Machine learning pipelines (like SciKit-learn)

Overview

Why a unified engine?

Spark programming model

Built-in libraries

Applications

Over 1000 deployments, clusters up to 8000 nodes

Spark Community

Many talks online at spark-summit.org

Top Applications

29%

36%

40%

44%

52%

68%

Faud Detection / Security

User-Facing Services

Log Processing

Recommendation

Data Warehousing

Business Intelligence

Spark Components Used

58%

58%

62%

69%

MLlib + GraphX

Spark Streaming

DataFrames

Spark SQL

75%

of users use more
than one component

Learn More

Get started on your laptop: spark.apache.org

Resources and MOOCs: sparkhub.databricks.com

Spark Summit: spark-summit.org

Thank You

