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What is Apache Spark? 

Fast and general cluster computing engine that 
generalizes the MapReduce model 

Makes it easy and fast to process large datasets 
• High-level APIs in Java, Scala, Python, R 
• Unified engine that can capture many workloads 
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Overview 
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Applications 



History: Cluster Computing 
2004 



A general engine for batch processing 

MapReduce 



Beyond MapReduce 

MapReduce was great for batch processing, but 
users quickly needed to do more: 
• More complex, multi-pass algorithms 
• More interactive ad-hoc queries 
• More real-time stream processing 

Result: specialized systems for these workloads 
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Problems with Specialized Systems 

More systems to manage, tune, deploy 

Can’t easily combine processing types 
• Even though most applications need to do this! 
• E.g. load data with SQL, then run machine learning 

In many cases, data transfer between engines is a 
dominant cost! 
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Background 

Recall 3 workloads were issues for MapReduce: 
• More complex, multi-pass algorithms 
• More interactive ad-hoc queries 
• More real-time stream processing 

While these look different, all 3 need one thing 
that MapReduce lacks: efficient data sharing 



Data Sharing in MapReduce 

iter. 1 iter. 2 .  .  . 

Input 

HDFS 
read 

HDFS 
write 

HDFS 
read 

HDFS 
write 

Input 

query 1 

query 2 

query 3 

result 1 

result 2 

result 3 

.  .  . 

HDFS 
read 

Slow due to replication and disk I/O 



iter. 1 iter. 2 .  .  . 

Input 

What We’d Like 

Distributed 
memory 

Input 

query 1 

query 2 

query 3 

.  .  . 

one-time 
processing 

10-100x faster than network and disk 



Spark Programming Model 

Resilient Distributed Datasets (RDDs) 
• Collections of objects stored in RAM or disk across cluster 
• Built via parallel transformations (map, filter, …) 
• Automatically rebuilt on failure 



Example: Log Mining 

Load error messages from a log into memory, then 
interactively search for various patterns 

lines	=	spark.textFile(“hdfs://...”)	

errors	=	lines.filter(lambda	s:	s.startswith(“ERROR”))	

messages	=	errors.map(lambda	s:	s.split(‘\t’)[2])	

messages.cache()	
Block 1 
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Example: full-text search of Wikipedia 
in 0.5 sec (vs 20s for on-disk data) 



Fault Tolerance 

file.map(lambda rec: (rec.type, 1)) 
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RDDs track lineage info to rebuild lost data 
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Fault Tolerance 

file.map(lambda rec: (rec.type, 1)) 
    .reduceByKey(lambda x, y: x + y) 
    .filter(lambda (type, count): count > 10) 

RDDs track lineage info to rebuild lost data 



Example: Logistic Regression 
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Source: Daytona GraySort benchmark, sortbenchmark.org  
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Libraries Built on Spark 
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// Load data using SQL 
points = ctx.sql(“select latitude, longitude from tweets”) 

// Train a machine learning model 
model = KMeans.train(points, 10) 

// Apply it to a stream 
sc.twitterStream(...) 
  .map(lambda t: (model.predict(t.location), 1)) 
  .reduceByWindow(“5s”, lambda a, b: a + b) 

Combining Processing Types 



Combining Processing Types 

Separate systems: 
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Some Recent Additions 

DataFrame API (similar to R and Pandas) 
• Easy programmatic way to work with structured data 

R interface (SparkR) 

Machine learning pipelines (like SciKit-learn) 
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Over 1000 deployments, clusters up to 8000 nodes 

Spark Community 

Many talks online at spark-summit.org   
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Spark Components Used 
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Learn More 

Get started on your laptop: spark.apache.org 

Resources and MOOCs: sparkhub.databricks.com 

Spark Summit: spark-summit.org 
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