
What Makes A
Great Software Engineer?

Paul Luo Li*+, Andrew J. Ko+
* +

Based on: Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What makes a great software engineer?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE '15), Vol. 1. IEEE Press, Piscataway, NJ, USA, 700-710.

• Learning Center tools for professional development: http://learning.acm.org
• 4,000+ trusted technical books and videos by O’Reilly, Morgan Kaufmann, etc.
• 1,000+ courses, virtual labs, test preps, live mentoring for software professionals covering

programming, data management, cybersecurity, networking, project management, more
• Training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, ITIL, PMI, etc.)
• Learning Webinars from thought leaders and top practitioner
• Podcast interviews with innovators, entrepreneurs, and award winners

• Popular publications:

• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/
• ACM Queue magazine for practitioners: http://queue.acm.org/

• ACM Digital Library, the world’s most comprehensive database of computing
literature: http://dl.acm.org.

• International conferences that draw leading experts on a broad spectrum of
computing topics: http://www.acm.org/conferences.

• Prestigious awards, including the ACM A.M. Turing and Infosys:
http://awards.acm.org/

• And much more… http://www.acm.org.

ACM Highlights

http://learning.acm.org/
http://cacm.acm.org/
http://queue.acm.org/
http://dl.acm.org/
http://www.acm.org/conferences
http://awards.acm.org/
http://www.acm.org/
http://www.acm.org/

What Makes A
Great Software Engineer?

Paul Luo Li*+, Andrew J. Ko+
* +

Based on: Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What makes a great software engineer?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE '15), Vol. 1. IEEE Press, Piscataway, NJ, USA, 700-710.

At the end of the day, to make a change [to
software]… it takes a dev—a butt in a seat—to
type [Source Depot] commit

-Partner Dev Manager, Windows

“
”

Essential To Know What Makes Great Engineers
And Why Those Attributes Matter

Educators (like University of Washington): to
train great engineers

Employers (like Microsoft): to hire and retain
great engineers

Young engineers: to become great.

Productive: finishing more tasks, faster, or with fewer mistakes
[Sackman et al. ‘68] [Gugerty&Olson ‘86]

Collaborates effectively in teams; makes meaningful contributions
[Kelly ‘99] [Begel&Simon ‘06] [Hewner&Guzdial ‘10]

Write/edit code; communicates with other engineers; acquires
understanding [LaToza ‘06] [Ko ‘06]

Technical knowledge: Programming Fundamentals, Software
Design, Software Modeling and Analysis, Software Verification
and Validation, Project Management [ACM/IEEE ‘13]

(From industry reports): open-minded and desires to learn
[McConnell ’04] [Bryant ‘13]

Knowledge About Software Engineering Expertise:
Incomplete, Indirect, Or Abstract

Productive: finishing more tasks, faster, or with fewer mistakes
[Sackman et al. ‘68] [Gugerty&Olson ‘86]

Collaborates effectively in teams; makes meaningful contributions
[Kelly ‘99] [Begel&Simon ‘06] [Hewner&Guzdial ‘10]

Write/edit code; communicates with other engineers; acquires
understanding [LaToza ‘06] [Ko ‘06]

Technical knowledge: Programming Fundamentals, Software
Design, Software Modeling and Analysis, Software Verification
and Validation, Project Management [ACM/IEEE ‘13]

(From industry reports): open-minded and desires to learn
[McConnell ’04] [Bryant ‘13]

Knowledge About Software Engineering Expertise:
Incomplete, Indirect, Or Abstract

Productive: finishing more tasks, faster, or with fewer mistakes
[Sackman et al. ‘68] [Gugerty&Olson ‘86]

Collaborates effectively in teams; makes meaningful contributions
[Kelly ‘99] [Begel&Simon ‘06] [Hewner&Guzdial ‘10]

Write/edit code; communicates with other engineers; acquires
understanding [LaToza ‘06] [Ko ‘06]

Technical knowledge: Programming Fundamentals, Software
Design, Software Modeling and Analysis, Software Verification
and Validation, Project Management [ACM/IEEE ‘13]

(From industry reports): open-minded and desires to learn
[McConnell ’04] [Bryant ‘13]

Knowledge About Software Engineering Expertise:
Incomplete, Indirect, Or Abstract

Productive: finishing more tasks, faster, or with fewer mistakes
[Sackman et al. ‘68] [Gugerty&Olson ‘86]

Collaborates effectively in teams; makes meaningful contributions
[Kelly ‘99] [Begel&Simon ‘06] [Hewner&Guzdial ‘10]

Write/edit code; communicates with other engineers; acquires
understanding [LaToza ‘06] [Ko ‘06]

Technical knowledge: Programming Fundamentals, Software
Design, Software Modeling and Analysis, Software Verification
and Validation, Project Management [ACM/IEEE ‘13]

(From industry reports): open-minded and desires to learn
[McConnell ’04] [Bryant ‘13]

Knowledge About Software Engineering Expertise:
Incomplete, Indirect, Or Abstract

Productive: finishing more tasks, faster, or with fewer mistakes
[Sackman et al. ‘68] [Gugerty&Olson ‘86]

Collaborates effectively in teams; makes meaningful contributions
[Kelly ‘99] [Begel&Simon ‘06] [Hewner&Guzdial ‘10]

Write/edit code; communicates with other engineers; acquires
understanding [LaToza ‘06] [Ko ‘06]

Technical knowledge: Programming Fundamentals, Software
Design, Software Modeling and Analysis, Software Verification
and Validation, Project Management [ACM/IEEE ‘13]

(From industry reports): open-minded and desires to learn
[McConnell ’04] [Bryant ‘13]

Knowledge About Software Engineering Expertise:
Incomplete, Indirect, Or Abstract

Few studies examine software engineering
expertise directly

Lack holistic view of software engineering
expertise

Little rigorous understanding

Missing definitions and explanations

The Gap: Incomplete, Indirect, And Abstract
Knowledge About Software Engineering Expertise

Microsoft: one of the largest, most successful, and most
diverse software development organizations

Ad Platform, Bing, Corp Dev (e.g. Security), Dynamics,
Office, Phone, Server & Tools, Windows, Windows
Services, Xbox, Skype, etc.

Talented and experienced software engineers: at least
Software Development Engineer Level 2 (3+ years of
experience), specifically targeted very experienced
engineers (15+ years of experience) :

Technical Fellow, Architect, Partner Dev Manager, Partner
Dev Lead, Principal Dev Lead, Senior Dev Manager,
Principal SDE

Sought Knowledge From
Expert Software Engineers At Microsoft

Analyzed 60+ Hours Of Interviews,
388,000+ Words Of Transcripts

Hour-long interviews, with drill-ins:

What were attributes of great engineers they’ve worked?

Why were those attributes were important?

Transcribed all interviews, then read them in detail,
classifying sentiments

Validated by a Senior Software Engineer

53 Attributes Of Great Software Engineers,
Consisting Of Internal And External Attributes

Internal Personality Traits
That is something that can’t be taught... they have just an inner
desire to succeed, and I don't know why. It's not necessarily for
the money, it's not necessarily for the recognition. It's just that
whatever it is they do, they want to do it extremely well… I've
seen a lot of smart people that have none of these
characteristics.....

-Principal Dev Lead, Windows

Internal Personality Traits
That is something that can’t be taught... they have just an inner
desire to succeed, and I don't know why. It's not necessarily for
the money, it's not necessarily for the recognition. It's just that
whatever it is they do, they want to do it extremely well… I've
seen a lot of smart people that have none of these
characteristics.....

-Principal Dev Lead, Windows

Computer technology, compared to other sciences or
technology, it's pretty young. Every year there's some
new technology, new ideas. If you are only satisfied with
things you already learned, then you probably find out in
a few years, you're out of date… good software engineer
[sic], he keep investigate, investment. [sic]

-SDE2, Corp Dev

Not satisfied with the status quo and constantly looking
to improve themselves, their product, and/or their
surroundings.

Continuously Improving…

Engineers do not start out being great: young
engineers need to learn and improve to
become great

The software field moves rapidly: great
engineers need to keep on learning to
continue to be great

…Becoming And Continuing Being Great

No matter how much you know, the software industry
is so large… there’s so many other areas… If that
person has something to say that hadn’t occurred to
me, I’ll stop everything and say, ok, explain this. What
did you see, that I didn’t see?

-Senior SDE, Office

Willing to judiciously let new information change how
they think, not taking the current understanding as
gospel

Open Minded…

Outcomes (e.g. user reactions or commercial
success) are difficult to predict: be open to
changing your understanding

Software can be large, complex, and changing:
be willing to consider understanding ideas of
others

…Avoiding Thinking You Know Everything

Take Away #1:

The ability to learn is more important
than any individual technical skill

Making Good Decisions

How do we make, what I often call, ‘robust decisions’?
What’s a decision we could make, depending on this range
of potential outcomes, which we can’t foresee?... if we can
make a decision that is viable, whether A or B happens, then
we don’t have to fight about A or B right now.

-Technical Fellow (division removed to preserve anonymity)

Making Good Decisions

How do we make, what I often call, ‘robust decisions’?
What’s a decision we could make, depending on this range
of potential outcomes, which we can’t foresee?... if we can
make a decision that is viable, whether A or B happens, then
we don’t have to fight about A or B right now.

-Technical Fellow (division removed to preserve anonymity)

Sometimes what used to be a second or third order effect
comes to dominate. So way back in the day, if you wanted to
performance optimize something you counted instructions.
Processors got faster and faster, but memory references didn't.
There became a day when it made more sense to count
memory references than it did to count instructions. Unless
you're conscious of when those things will intersect, you'll be on
the wrong side of history and be frustrated.

-Technical Fellow (division removed to preserve anonymity)

Continuously updating their mental models at all levels of
abstraction—ranging from technical details to industry trends—
by explicitly evaluating changes in their context

Updating Decision Making Knowledge…

…Continuing To Make The Optimal Choice

New options become available: what was
impossible yesterday, may be possible today

The computing context change: expected
outcomes may change over time

To solve the problem, [great engineers] have to have the
ability to connect things… You are always debugging
layers of stacks of code… this layer talks to some other
layer in the horizontal... you need to solve the problem
and you don't know what's going on.

-Senior SDE, Windows Services

Grasping and reasoning about complex and intertwining
ideas with agility

Mentally Capable Of Handling Complexity…

…Decisions, In Practice, Are Complicated

Software build on top of many layers of
technology

Software interact with many other components
and other software systems

Myriad considerations and constraints

Take Away #2:

Making good decisions is rarely discussed
in the software engineering literature, but
it is critical to being a great software
engineer

Interactions With Teammates
The way [this great software engineer] just kind of touch
people, just dissolves the conflicts right there… that magic
to make people respect him. That’s fun magic, I think that
not everyone possess.

-Senior SDE, Windows

Interactions With Teammates
The way [this great software engineer] just kind of touch
people, just dissolves the conflicts right there… that magic
to make people respect him. That’s fun magic, I think that
not everyone possess.

-Senior SDE, Windows

Someone else trusting you… ‘I know that this person
always speaks the truth.’ As a result of that, when they
say something is good, I will totally believe them
because they are not trying to kind of misrepresent
something or make them look better...

-Principal Dev Manager, Windows Services

Provide credible information that others can act on

Honest…

…Critical For Trust

Engineers want to be solving problems not be
shifting blame

Lack of honesty paralyzes ability to make
forward progress

Dishonesty: an important reason for leaving an
organization

Our areas where the things are inherently difficult to
talk about… business partners or with a customer…
they think about things in much different terms… you
have to kind of switch gears… why you should care
about it and here is how you should think about it.

-Principal Dev Lead, Corp Dev

Adjusting the message to effectively mold another
person’s understanding of a situation

Creates Shared Understanding…

…Essential For Communicating Effectively

Communicating with others (e.g. partners and
customers): need to adjust the language to be
comprehensible

Marshalling resources to complete projects:
completing large projects requires getting
everyone ‘on the same page’

Take Away #3:

Software engineering is a sociotechnical
undertaking

Engineering The Software Product

The style… always, an idea, and it was all clean… very
concise. Just looking at it, you can say, "Okay, this guy,
he knew what he was doing."… There's no extra stuff.
Everything is minimally necessary and sufficient as it
should be. It's well thought-out off screen.

- Senior SDE, Windows

Engineering The Software Product

The style… always, an idea, and it was all clean… very
concise. Just looking at it, you can say, "Okay, this guy,
he knew what he was doing."… There's no extra stuff.
Everything is minimally necessary and sufficient as it
should be. It's well thought-out off screen.

- Senior SDE, Windows

This code is performance critical, compatibility
sensitive, and is used in a huge variety of contexts. If a
developer fails to handle an error, some customer will
hit it, and we will likely need to issue a hotfix; if a
developer implements an inefficient algorithm (N^2 is
not ok)… consumes memory excessively in some
environment…

-Principal SDE, Windows

Quality code that considers error handling, memory
consumption, performance, security, and style

Pays Attention To Coding Details…

…Respected By Peers

“Greatness” is peer bestowed: engineers that
cannot get the basics right are not respected

Never complicate any things… when you simplify
things it becomes easier for you to maintain, going
forward for customers… You get lesser number of
issues reported by a customer.

-Senior Dev Lead, Dynamics

Simple and intuitive designs that another person (or
themselves later) could easily understand.

Elegant…

…Avoiding Complexity Can Be Difficult

Complexity is bad, but often unavoidable:
those that can come up with elegant designs
are revered

Take Away #4:

Delivering the code is often insufficient;
complex contextual technical
considerations abound.

Discussed Eight Attributes
In The Four Areas…

Many Other
Interesting and Important Attributes

http://dl.acm.org/citation.cfm?id=2818839

Help Leaders Of Engineers To...

Make better hiring decisions: especially when
reasoning about non-technical attributes

Improve attributes associated with leadership

Cultivate desirable attributes within your team:
avoid deleterious attributes that cause great
engineers to leave

Help Young Engineers To...

Target areas for improvement

Find the right fit with teams: different teams
emphasize various attributes differently

Better present yourself to potential employers

Help Educators To…

Consider new topics for software engineering
curriculum: decision making (e.g. Herbert Simon)

Prepare students for necessary attributes not
amenable to be taught in academic settings (e.g.
self-reliant)

This work was supported in part by Microsoft, Google, and the National Science Foundation
(NSF) under Grants CCF-0952733, CNS-1240786, and IIS-1314399.

Thanks to our informants!

What makes a great software engineer?
http://dl.acm.org/citation.cfm?id=2818839

ACM: The Learning Continues…

• Questions about this webcast? learning@acm.org

• ACM Learning Webinars (on-demand archive):
http://learning.acm.org/webinar

• ACM Learning Center: http://learning.acm.org

• ACM Queue: http://queue.acm.org/

• ACM SIGSOFT: http://www.sigsoft.org/

mailto:learning@acm.org
http://learning.acm.org/webinar
http://learning.acm.org/
http://queue.acm.org/
http://www.sigsoft.org/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	At the end of the day, to make a change [to software]… it takes a dev—a butt in a seat—to type [Source Depot] commit��-Partner Dev Manager, Windows
	Slide Number 8
	Knowledge About Software Engineering Expertise: �Incomplete, Indirect, Or Abstract
	Knowledge About Software Engineering Expertise: �Incomplete, Indirect, Or Abstract
	Knowledge About Software Engineering Expertise: �Incomplete, Indirect, Or Abstract
	Knowledge About Software Engineering Expertise: �Incomplete, Indirect, Or Abstract
	Knowledge About Software Engineering Expertise: �Incomplete, Indirect, Or Abstract
	The Gap: Incomplete, Indirect, And Abstract Knowledge About Software Engineering Expertise �
	Sought Knowledge From �Expert Software Engineers At Microsoft
	Slide Number 16
	53 Attributes Of Great Software Engineers,�Consisting Of Internal And External Attributes
	Internal Personality Traits
	Internal Personality Traits
	Continuously Improving…
	…Becoming And Continuing Being Great
	Open Minded…
	…Avoiding Thinking You Know Everything
	Take Away #1:��The ability to learn is more important than any individual technical skill��
	Making Good Decisions
	Making Good Decisions
	Updating Decision Making Knowledge…
	…Continuing To Make The Optimal Choice
	Mentally Capable Of Handling Complexity…
	…Decisions, In Practice, Are Complicated
	Take Away #2:��Making good decisions is rarely discussed in the software engineering literature, but it is critical to being a great software engineer��
	Interactions With Teammates
	Interactions With Teammates
	Honest…
	…Critical For Trust
	Creates Shared Understanding…
	…Essential For Communicating Effectively
	Take Away #3:��Software engineering is a sociotechnical undertaking ��
	Engineering The Software Product
	Engineering The Software Product
	Pays Attention To Coding Details…
	…Respected By Peers
	Elegant…
	…Avoiding Complexity Can Be Difficult
	Take Away #4: ��Delivering the code is often insufficient; complex contextual technical considerations abound.
	Discussed Eight Attributes�In The Four Areas…
	Many Other �Interesting and Important Attributes
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	ACM: The Learning Continues…

