
The Evolution of Microservices
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 June 2016

What does @adrianco do?

@adrianco

Technology Due
Diligence on Deals

Presentations at
Conferences

Presentations at
Companies

Technical
Advice for Portfolio

Companies

Program
Committee for
Conferences

Networking with
Interesting PeopleTinkering with

Technologies

Maintain
Relationship with
Cloud Vendors

Previously: Netflix, eBay, Sun Microsystems, CCL, TCU London BSc Applied Physics

Agenda

Why now?
Microservice Architectures

What’s Missing?
Migration and Simulation

What’s Next?

Key Goals of the CIO?
Align IT with the business
Develop products faster
Try not to get breached

Security Blanket Failure

Insecure applications
hidden behind firewalls
make you feel safe until
the breach happens…

http://peanuts.wikia.com/wiki/Linus'_security_blanket

“Web scale”
vs.

“Enterprise”

“Webscale”

Freedom and responsibility
High trust

“Enterprise”

Bureaucracy and blame
Low trust

How can everyone get
speed, low cost, and better

usability?

Mixed methods:
Disaggregation into
microservices helps!

@adrianco

Example Monolith:

Sign
Up Login Home

Page

Payment
Method

Personal
Data Reports

Monolithic
“kitchen sink”

database

Monolithic
application

Complex mix of
queries

User

Because one
part of the
monolithic
application and
database holds
sensitive data all
of it is subject to
the most rigorous
policies

@adrianco

Microservices version:

Sign
Up Login Home

Page

Payment
Method

Personal
Data ReportsOptimized

datastores

Microservices
separation of concerns

Isolated single purpose
connections

User

Because each
microservice can
conform to the
appropriate policy,
demands for agility
can be separated
from requirements
for security

Segregated team owns
secure data sources and

infrequent updates

Segregated team owns
rapid improvement of

most common use cases

@adrianco

In Search of Segmentation

Ops

Dev

Datacenters
AD/LDAP Roles
VLAN Networks

Hypervisor
IPtables

Docker Links

AWS Accounts
IAM Roles
VPC
Security Groups
Calico Policy
Docker Net/Weave

@adrianco

Hierarchical Segmentation

B CA B C E FD E F

Homepage Team Security Group Reports Team Security Group
VPC Z - Manage a small number of large network spaces

D

An AWS oriented example…

AWS Account - Manage across multiple accounts

containers and links

“You build it, you run it.”
Werner Vogels 2006

Developer responsibilities:
Faster, cheaper, safer

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

Speeding Up The Platform

AWS Lambda is leading exploration of serverless architectures in 2016

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Microservices

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Microservice Architectures

ConfigurationTooling Discovery Routing Observability

Development: Languages and Container

Operational: Orchestration and Deployment Infrastructure

Datastores

Policy: Architectural and Security Compliance

Next Generation Applications
Fill in the gaps, rapidly evolving ecosystem choices

Archaius
LaunchDarkly

Habitat

Configuration

Lambda
Docker

Spinnaker

Tooling

Etcd
Eureka
Consul

Discovery

Compose
Linkerd
Weave

Routing

Zipkin
Prometheus

Hystrix

Observability

Development: components interfaces languages e.g. Docker Hub, Artifactory, Datawire Quark, Go, Rust

Operational: Mesos, Kubernetes, Swarm, Nomad for private clouds. ECS, Mesos, GKS for public

Datastores: Orchestrated, Distributed Ephemeral e.g. Cassandra, or DBaaS e.g. DynamoDB

Policy: Security compliance e.g. Docker Content Trust. Architecture compliance e.g. Cloud Foundry

What could go wrong?

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

Retries add unproductive work

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, one retry

Failed
Service

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, one retry

Failed
Service

3s
1s
1s

Fast fail
response
after 2s

Upstream timeout must always be longer than
total downstream timeout * retries delay

No unproductive work while fast failing

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, failover retry

Failed
Service

For replicated services with multiple instances
never retry against a failed instance

No extra retries or unproductive work

Good
Service

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, failover retry

Failed
Service3s 1s

For replicated services with multiple instances
never retry against a failed instance

No extra retries or unproductive work

Good
Service

Successful
response
delayed 1s

Cloud Native
Monitoring and
Microservices

Interesting
architectures have a
lot of microservices!
Flow visualization is

a big challenge.

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

Simulated Microservices
Model and visualize microservices
Simulate interesting architectures
Generate large scale configurations
Eventually stress test real tools

Code: github.com/adrianco/spigo
Simulate Protocol Interactions in Go
Visualize with D3
See for yourself: http://simianviz.surge.sh
Follow @simianviz for updates

ELB Load Balancer

Zuul
API Proxy

Karyon
Business Logic

Staash
Data Access Layer

Priam
Cassandra Datastore

Three
Availability
Zones

Denominator
DNS Endpoint

http://github.com/adrianco/spigo
http://simianviz.surge.sh

Definition of an architecture

{
 "arch": "lamp",
 "description":"Simple LAMP stack",
 "version": "arch-0.0",
 "victim": "webserver",
 "services": [
 { "name": "rds-mysql", "package": "store", "count": 2, "regions": 1, "dependencies": [] },
 { "name": "memcache", "package": "store", "count": 1, "regions": 1, "dependencies": [] },
 { "name": "webserver", "package": "monolith", "count": 18, "regions": 1, "dependencies": ["memcache", "rds-mysql"] },
 { "name": "webserver-elb", "package": "elb", "count": 0, "regions": 1, "dependencies": ["webserver"] },
 { "name": "www", "package": "denominator", "count": 0, "regions": 0, "dependencies": ["webserver-elb"] }
]
}

Header includes
chaos monkey victim

New tier
name

Tier
package

0 = non
Regional

Node
count

List of tier
dependencies

See for yourself: http://simianviz.surge.sh/lamp

http://simianviz.surge.sh/lamp

Running Spigo
$./spigo -a lamp -j -d 2
2016/01/26 23:04:05 Loading architecture from json_arch/lamp_arch.json
2016/01/26 23:04:05 lamp.edda: starting
2016/01/26 23:04:05 Architecture: lamp Simple LAMP stack
2016/01/26 23:04:05 architecture: scaling to 100%
2016/01/26 23:04:05 lamp.us-east-1.zoneB.eureka01....eureka.eureka: starting
2016/01/26 23:04:05 lamp.us-east-1.zoneA.eureka00....eureka.eureka: starting
2016/01/26 23:04:05 lamp.us-east-1.zoneC.eureka02....eureka.eureka: starting
2016/01/26 23:04:05 Starting: {rds-mysql store 1 2 []}
2016/01/26 23:04:05 Starting: {memcache store 1 1 []}
2016/01/26 23:04:05 Starting: {webserver monolith 1 18 [memcache rds-mysql]}
2016/01/26 23:04:05 Starting: {webserver-elb elb 1 0 [webserver]}
2016/01/26 23:04:05 Starting: {www denominator 0 0 [webserver-elb]}
2016/01/26 23:04:05 lamp.*.*.www00....www.denominator activity rate 10ms
2016/01/26 23:04:06 chaosmonkey delete: lamp.us-east-1.zoneC.webserver02....webserver.monolith
2016/01/26 23:04:07 asgard: Shutdown
2016/01/26 23:04:07 lamp.us-east-1.zoneB.eureka01....eureka.eureka: closing
2016/01/26 23:04:07 lamp.us-east-1.zoneA.eureka00....eureka.eureka: closing
2016/01/26 23:04:07 lamp.us-east-1.zoneC.eureka02....eureka.eureka: closing
2016/01/26 23:04:07 spigo: complete
2016/01/26 23:04:07 lamp.edda: closing

-a architecture lamp
-j graph json/lamp.json
-d run for 2 seconds

Open Zipkin

A common format for trace annotations
A Java tool for visualizing traces
Standardization effort to fold in other formats
Driven by Adrian Cole (currently at Pivotal)
Extended to load Spigo generated trace files

Trace for one Spigo Flow

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Endpoint

ELB

PHP
MySQL

MySQL

Next step Controls node
placement distance

Select models

http://simianviz.surge.sh/migration

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Step 1 - Add Memcache Step 2 - Add Web Proxy Service

http://simianviz.surge.sh/migration

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Step 3 - Add Data Access Layer Step 4 - Add Microservices

Data Access

node.js

memcache per zone

http://simianviz.surge.sh/migration

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Step 5 - Add Cassandra Step 6 - Remove MySQL

12 node cross zone
Cassandra cluster

MySQL

http://simianviz.surge.sh/migration

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Step 7 - Add Second Region Step 8 - Connect Cassandra Regions
Endpoint with
location
routed DNS

http://simianviz.surge.sh/migration

Migrating to Microservices
See for yourself: http://simianviz.surge.sh/migration

Step 9 - Add Third Region

Endpoint with
location
routed DNS

http://simianviz.surge.sh/migration

@adrianco

Simple Architecture Principles

Symmetry
Invariants

Stable assertions
No special cases

What’s Next?

Serverless

Serverless Architectures

AWS Lambda getting some early wins

Google Cloud Functions, Azure Functions alpha launched

IBM OpenWhisk - open sourced

Startup activity: iron.io , serverless.com, apex.run toolkit

http://iron.io
http://serverless.com
http://apex.run

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

AWS Lambda Reference Arch
http://www.allthingsdistributed.com/2016/05/aws-lambda-serverless-reference-architectures.html

http://www.allthingsdistributed.com/2016/05/aws-lambda-serverless-reference-architectures.html

Serverless Programming Model

Event driven functions
Role based permissions

Whitelisted API based security
Good for simple single threaded code

Serverless Cost Efficiencies

100% useful work, no agents, overheads
100% utilization, no charge between requests

No need to size capacity for peak traffic
Anecdotal costs ~1% of conventional system

Ideal for low traffic, Corp IT, spiky workloads

Serverless Work in Progress

Tooling for ease of use
Multi-region HA/DR patterns

Debugging and testing frameworks
Monitoring, end to end tracing

DIY Serverless Operating Challenges

Startup latency
Execution overhead

Charging model
Capacity planning

Learn More…

@adrianco

“We see the world as increasingly more complex and chaotic
because we use inadequate concepts to explain it. When we
understand something, we no longer see it as chaotic or complex.”

Jamshid Gharajedaghi - 2011
Systems Thinking: Managing Chaos and Complexity: A Platform for Designing Business Architecture

Q&A
Adrian Cockcroft @adrianco

http://slideshare.com/adriancockcroft
Technology Fellow - Battery Ventures

See www.battery.com for a list of portfolio investments

http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft

Security

Visit http://www.battery.com/our-companies/ for a full list of all portfolio companies in which all Battery Funds have invested.

Palo Alto Networks

Enterprise IT

Operations &
Management

Big DataCompute

Networking

Storage

http://www.battery.com/our-companies/

