
15/09/2016 © Lero 2015 1

Evolving Critical Systems

Prof. Mike Hinchey

15/09/2016 © Lero 2015 2

• Learning Center tools for professional development: http://learning.acm.org

• 4,900+ trusted technical books and videos from O’Reilly, Morgan Kaufmann, etc.

• 1,400+ courses, virtual labs, test preps, live mentoring for software professionals covering
programming, data management, cybersecurity, networking, project management, more

• 30,000+ task-based short videos for “just-in-time” learning

• Training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, ITIL, PMI, etc.)

• Learning Webinars from thought leaders and top practitioner

• Podcast interviews with innovators, entrepreneurs, and award winners

• Popular publications:

• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/

• ACM Queue magazine for practitioners: http://queue.acm.org/

• ACM Digital Library, the world’s most comprehensive database of computing literature:
http://dl.acm.org.

• International conferences that draw leading experts on a broad spectrum of computing
topics: http://www.acm.org/conferences.

• Prestigious awards, including the ACM A.M. Turing and Infosys: http://awards.acm.org

• And much more… http://www.acm.org.

ACM Highlights

15/09/2016 © Lero 2015 3

“ “Housekeeping”

 Twitter: #ACMLearning

• Welcome to today’s ACM Learning Webinar, “Evolving Critical Systems” by Mike Hinchey. The presentation

starts at the top of the hour and lasts 60 minutes. Slides will advance automatically throughout the event.
You can resize the slide area as well as other windows by dragging the bottom right corner of the slide
window, as well as move them around the screen. On the bottom panel you’ll find a number of widgets,
including Twitter, Sharing, and Wikipedia apps.

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key on your keyboard
in Windows, Command + R if on a Mac, or refresh your browser if you’re on a mobile device; or close and
re-launch the presentation. You can also view the Webcast Help Guide, by clicking on the “Help” widget in
the bottom dock.

• To control volume, adjust the master volume on your computer. If the volume is still too low, use
headphones.

• If you think of a question during the presentation, please type it into the Q&A box and click on the submit
button. You do not need to wait until the end of the presentation to begin submitting questions.

• At the end of the presentation, you’ll see a survey open in your browser. Please take a minute to fill it out to
help us improve your next webinar experience.

• You can download a copy of these slides by clicking on the Resources widget in the bottom dock.

• This session is being recorded and will be archived for on-demand viewing in the next 1-2 days. You will
receive an automatic email notification when it is available, and check http://learning.acm.org/ in a few
days for updates. And check out http://learning.acm.org/webinar for archived recordings of past webcasts.

Talk Back

• Use Twitter widget to Tweet your favorite quotes
from today’s presentation with hashtag
#ACMLearning

• Submit questions and comments via Twitter to
@acmeducation – we’re reading them!

• Use the sharing widget in the bottom panel to
share this presentation with friends and
colleagues.

15/09/2016 © Lero 2015 5

66 Years Ago …

5

15/09/2016 © Lero 2015 6

EDSAC

• 650 instructions per second.

• 1024 17-bit words of memory in mercury ultrasonic delay
lines.

• Paper tape input and teleprinter output at 6 2/3 characters
per second.

• 3000 valves, 12 kW power consumption, occupied a room
5m by 4m.

• "Operating system" occupied 31 words of read-only
memory.

• Early use to solve problems in meteorology, genetics and
X-ray crystallography.

6

15/09/2016 © Lero 2015 7

Difference Engine

7

15/09/2016 © Lero 2015 8

Motivation

Errata, detected in Taylor’s Logarithms. London: 4to, 1972 [sic]

…

Kk Co-sine of 14.18.3 – 3398 – 3298

 Nautical Almanac
(1832)

…

In the list of ERRATA detected in Taylor’s Logarithms, for cos. 4 18’ 3’’
read cos. 14 18’2’’.

Nautical Almanac (1833)

ERRATUM of the ERRATUM of the ERRATA of TAYLOR’S Logarithms.
For cos. 4 18’3’’, read 14 18’ 3’’.

Nautical Almanac (1836)

8

15/09/2016 © Lero 2015 9

First Programmer

9

Augusta Ada King, Countess of Lovelace

15/09/2016 © Lero 2015 10 10

Software Lags behind Hardware

15/09/2016 © Lero 2015 11 11

Software vs. Hardware

• Pervasive yet non-obvious;

• Abstract as opposed to “concrete”;

• Perceived to be “easy to change”;

• Easy-to-change means often
changed;

• Not visibly deteriorating.

15/09/2016 © Lero 2015 12 12

Wear versus Deterioration

15/09/2016 © Lero 2015 13 13

Major Software Failures

• Therac 25

• ARIANE 5

• Mars Polar Lander

• … and many many
more!

15/09/2016 © Lero 2015 14 14

The Problem

 The problem is Complexity.

 Bill Gates

15/09/2016 © Lero 2015 15 15

Size of Modern Applications

Source: Ebert & Jones, Computer, April 2009

15/09/2016 © Lero 2015 16 16

Increasing Size

Source: Ebert & Jones, Computer, April 2009

15/09/2016 © Lero 2015 17 17

Challenges for Software Engineering

•Increases in demand for greater, more complex

functionality;

•Stricter (required and desirable) constraints on

performance and reaction times;

•Attempts to increase productivity and reduce costs while

constantly pushing requirements to the limit;

•Requirement of regular change and evolving systems.

15/09/2016 © Lero 2015 18 18

Evolution

Any intelligent fool can make things bigger and more complex …

It takes a touch of genius and a lot of courage to move in the

opposite direction.

 Albert Einstein

15/09/2016 © Lero 2015 19

Evolving Systems

At runtime, some systems
need to adapt and evolve:

 to react to changes in the
environment;

 to meet necessary
constraints on the system
that were not previously
satisfied and possibly not
previously known;

 to protect the system from
external threats.

 19

Legacy systems are those that

have evolved over longer

timeframes, due to:

 Separate systems being

combined together;

 new hardware or software

technologies being used;

 new user requirements;

 new regulatory compliance

requirements.

Software is not static

15/09/2016 © Lero 2015 20

20

Critical Systems

Financial / Enterprise
Information Systems

Medical Devices

Automotive Systems

 Systems where failure

or malfunction will lead

to significant negative

consequences.

 Strict requirements for

security and safety to

protect the user or

others.

 Critical to the

organization’s mission,

product base,

profitability or

competitive advantage.

15/09/2016 © Lero 2015 21

Current Situation

 Software is pervasive, widely used, and often invisible.

 Much legacy code, badly structured, poorly maintained.

 Many software failures, declining quality:

 E.g., Therac 25, ARIANE 5, Mars Polar Lander, …

and many more!

 Complex physical environments and diverse hardware

platforms.

 Insufficient number of qualified developers and testers.

 Current techniques do not scale sufficiently and have

failed to overcome 50 years of declining quality.

15/09/2016 © Lero 2015 22 22

Evolving Critical Systems

 have evolved from legacy code and legacy systems, or

 result from a combination of existing component-based

systems, possibly over significant periods of time, or

 evolve as a result of a focused and intentional change

in organization and architecture to exploit newer

techniques believed to be beneficial;

 they require that the system adapt and evolve at run-

time in order to react to changes in the environment or

to meet necessary constraints on the system that were

not previously satisfied and possibly not previously

known.

15/09/2016 © Lero 2015 23 23

ECS

An Evolving Critical System must be

• described in a manner that enables the developer
to understand the necessary functionality of the
system (requirements engineering), and

• which are expressed in a clear and precise way
(formal specification),

• and yet which offers sufficient flexibility to follow
the processes and practices within the
organisation or necessitated by the development
process (agile methods, software processes,
software process improvement).

15/09/2016 © Lero 2015 24

Requirements Effort vs. Cost Overrun

24

15/09/2016 © Lero 2015 25 25

ECS

The architecture of the system must be well understood;

• the architecture may be the basis for future
decisions on changes to be made as part of the
evolution process;

• this is particularly true where the system evolves
at run-time (adaptive systems, autonomic
computing, organic computing);

• models of the system are a key component
(model driven development), which will change
over time and offer insights into potential areas of
difficulty and as the basis for (possibly
automated) code-generation.

15/09/2016 © Lero 2015 26 26

An ECS must be structured

• in a way that change can be controlled and clear,

• with fixed core functionality

• and then features that may be changed, adapt, and
even be deleted (software product lines) in order to
support the necessary evolution.

ECS

15/09/2016 © Lero 2015 27 27

ECS

Determining that quality and reliability are not impaired
involves

• continual overview of the development and
evolutionary process (processes and methods,
process evaluation);

• ensuring that policies and constraints are met
(autonomic computing, organic computing, adaptive
systems);

• collecting and recording data and evidence (metrics,
software process improvement), and

• computation of a range of reliability measures at
various points in time and the appropriate analysis
thereof (software reliability engineering).

15/09/2016 © Lero 2015 28 28

ECS Research Agenda

An ECS Research Agenda addresses several core
research topics in the evolving critical systems field.

• The central research topic is building software that

• (a) is highly reliable, and

• (b) retains this reliability as it evolves, without
incurring prohibitive costs.

15/09/2016 © Lero 2015 29 29

PEA+T

15/09/2016 © Lero 2015 30 30

Peat

15/09/2016 © Lero 2015 31 31

PEA+T

15/09/2016 © Lero 2015 32 32

Sensors Effectors

Analyze Plan

Monitor
Execute

Topology

Recent Activity Log Policy

Calendar
Knowledge

Analysis Engines

Policy Validations

Policy Resolution

Rules Engines

Policy Interpreter

Policy Transforms

Plans Generators

Workflow Engine

Service Dispatcher

Scheduler Engine
Filters

Simple Correlators

Metric Managers
Distribution Engine

Source: IBM, AC Blueprint 2003

MAPE

15/09/2016 © Lero 2015 33

Some Examples of Lero ECS Research

1. Smarter Cities

– In conjunction with Intel Labs Europe, Dublin City Council and IBM

2. Software Product Lines

– Use of models to gain efficiencies

3. Adaptive Security and Privacy (Cloud, smart buildings)

– In conjunction with United Technologies and IBM

4. Parallelisation of code to optimise use of multicore

hardware

– In conjunction with Movidius and IBM

33

15/09/2016 © Lero 2015 34

Some Examples of Lero ECS Research

5. Architectural Recovery and Preservation

– In conjunction with several financial services companies

6. Performance Evaluation in Large Systems

– In conjunction with IBM

7. Autonomous Space Systems

– In conjunction with NASA and ESA and EU FP7 Project ASCENS

34

15/09/2016 © Lero 2015 35 35

An ECS Scenario

Space Exploration

• Some of the most complex and expensive software
applications to date.

• High Levels of Autonomy.

• Significant consequences for failure.

15/09/2016 © Lero 2015 36

Swarm Technologies

• Inspired by swarms of bees and flocks of birds in
nature;

• Many application areas:

– drug discovery;

– communication systems;

– environmental monitoring;

– exploration.

36

15/09/2016 © Lero 2015 37

Swarm Technologies

Coordinated swarms of smaller spacecraft will
offer:

• More effective use of solar power;

• Access to areas where large craft could not go;

• Ability to perform more complex tasks;

• Greater accuracy and flexibility.

37

15/09/2016 © Lero 2015 38

Autonomous NanoTechnology Swarm

Using swarms of “intelligent”, autonomous spacecraft to
explore

1. Lunar and Martian surface (Lander Amorphous Rover
Antenna, LARA)

2. Saturn’s rings (Saturn Autonomous Ring Array, SARA)

3. Asteroid belt (Prospecting Asteroid Mission, PAM)

38

15/09/2016 © Lero 2015 39 39

ANTS Concept Mission - PAM

15/09/2016 © Lero 2015 40

Contributions

1. Formal Methods

2. Autonomic Computing

3. Software Product Lines

4. Automatic Code Generation

40

15/09/2016 © Lero 2015 41 41

Model of Formal Method

v

is a set of (partial) transition functions

where each transition function maps










ocessason

geceiveMessaeSendMessag

Pr,Re

,Re,

MemoryOutputInputMemory 

is a set of (partial) transition functions

where each transition function maps










ocessason

geceiveMessaeSendMessag

Pr,Re

,Re,

MemoryOutputInputMemory 

goces

goces

goces

goces

goces

goces

easoning

easoning

ingCommunicateceive

ingCommunicateceive

ingCommunicateceive

ingCommunicat

ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17

sinPr.RecoveryProcessing:16

sinPr.DiagnosisProcessing:16

sinPr.PredictionProcessing:17

sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17

R.eactiveReasoningR:50

R.eliberatveReasoningD:50

.orMessageErrR:1

.derMessageLeaR:50

.kerMessageWorR:50

.eErrorSendMessag:1

.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

























































lkklkklk nmnmn   
kkkkk nmmnmn  )(

goces

goces

goces

goces

goces

goces

easoning

easoning

ingCommunicateceive

ingCommunicateceive

ingCommunicateceive

ingCommunicat

ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17

sinPr.RecoveryProcessing:16

sinPr.DiagnosisProcessing:16

sinPr.PredictionProcessing:17

sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17

R.eactiveReasoningR:50

R.eliberatveReasoningD:50

.orMessageErrR:1

.derMessageLeaR:50

.kerMessageWorR:50

.eErrorSendMessag:1

.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

























































lkklkklk nmnmn   
kkkkk nmmnmn  )(

otherwise

AGEERROR_MESS

RTH(msg) = EAif

AGEEARTH_MESS

RKER(msg) = WOif

SAGEWORKER_MES

SSENGER(msg) = ME if

MESSAGEMESSENGER_

ADER(msg) = LEif

SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender

 case

?._

,,

,,

,,

,,

,,

, 

otherwise

AGEERROR_MESS

RTH(msg) = EAif

AGEEARTH_MESS

RKER(msg) = WOif

SAGEWORKER_MES

SSENGER(msg) = ME if

MESSAGEMESSENGER_

ADER(msg) = LEif

SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender

 case

?._

,,

,,

,,

,,

,,

, ),,(' ingCommsTracklModesGoalmemory ),,(' ingCommsTracklModesGoalmemory 

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pf
Actions leading to the agent

state
Agent State

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pf
Actions leading to the agent

state
Agent State





















5.5.00

25.25.5.0

25.25.5.0

25.25.5.0

P

Communicating

Reasoning

Processing

Initial

state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25
Communicating

Reasoning

Processing

Initial

state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25





















5.5.00

25.25.5.0

25.25.5.0

25.25.5.0

P

Communicating

Reasoning

Processing

Initial

state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25
Communicating

Reasoning

Processing

Initial

state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

Swarm Formal Method Model and Outline

15/09/2016 © Lero 2015 42 42

Specification

15/09/2016 © Lero 2015 43

Autonomic Computing

Rest and Digest

sympathetic

(SyNS)

parasympathetic

(PaNS)

 Fight or Flight

Inspiration from the human/mammalian autonomic nervous

system.

43

15/09/2016 © Lero 2015 44 Autonomic Agent (Mobile agent) Autonomic Agent Apoptosis Controls  

The Autonomic Environment

AE

Autonomic Communications Channel

MC

AM

S*

S*

S*

S*

S*
S*

S* S*

AE

MC

AM

AE

MC

AM

S*

S*

S*

S*

S*

S*

S*

S*

S*

S*

Zzz





I am alive

I am healthy

Stay awake

sSleep

ALice

44

15/09/2016 © Lero 2015 45 45

SPL / Feature Model

Explore

Universe

Explore and

Discover

Set Objetive

and Approach

Flight
Search

new

objective

Inform

objective

Evaluate

Interest

Avoid

Crashing

Avoid run a

out of

power

Protect

from solar

storms

measure

image

Send Data

Earth

Self-

Protection

A
b

s
tr

a
c

ti
o

n

L
a

y
e

r
 1

A
b

s
tr

a
c

ti
o

n

L
a

y
e

r
 2

A
b

s
tr

a
c

ti
o

n

L
a

y
e

r
 4

A
b

s
tr

a
c

ti
o

n

L
a

y
e

r
 3

Measure

solar storms

Switch off

sub-sytems

Use sail as

a shield

...

...

...

...

...

...

Move

Snake Amoeba Rolling

Walk

Gas

prop.

Use Sail

to Orbit

and flight

Analyse

measure

X-ray

Mandatory Optional

At least one

of them

Only one

of them

Digital

Camera

Optical

Camera

If father present, the heir is:

Dependency

15/09/2016 © Lero 2015 46 46

Requirements to Design to Code (R2D2C)

Requirements

expressed as

scenarios

Code Models
Existing code

generating tools

Existing model

extraction (reverse

engineering) tools

Mathematical laws

of concurrency

(reversed)

15/09/2016 © Lero 2015 47

Current Status

47

15/09/2016 © Lero 2015 48

Benefits of the Method

• Automation of entire development process;

• Significant increase in quality;

• Ability to do formal proof on properties of
implementations;

• Ability to do formal proof of correctness;

• Automated means for requirements analysis;

• Guaranteed correspondence between requirements
and their implementation as code.

48

15/09/2016 © Lero 2015 49

Applications

• End-to-end automatic code generation of provably correct

systems;

• Automatic reimplementation after any requirements

change;

• Exploiting re-use across platforms;

• Reverse engineering legacy systems to a mathematically

sound model;

• Analysis and documentation of existing systems (e.g.,

expert systems);

• Re-engineering of legacy systems to a provably correct

new implementation.

49

15/09/2016 © Lero 2015 50

Domains (to date)

• Agent Based Systems;

• Wireless Sensor Networks ;

• ANTS;

• Verification of Robotic Procedures (cf. Hubble Space

Telescope Robotic Servicing Mission).

50

15/09/2016 © Lero 2015 51 51

15/09/2016 © Lero 2015 52 52

HRSM Procedures

15/09/2016 © Lero 2015 53 53

HRSM Procedures

15/09/2016 © Lero 2015 54 54

15/09/2016 © Lero 2015 55 55

15/09/2016 © Lero 2015 56 56

15/09/2016 © Lero 2015 57

Caveat

57

/ 

15/09/2016 © Lero 2015 58 58

Conclusions

• Software must evolve.

• There is a tension between reliability, predictability

and cost and this need for evolution.

• There is a need for an Evolving Critical Systems

research effort.

• Lero and others are driving that effort.

15/09/2016 © Lero 2015 59 59

Any problem in computer science can be solved with another

layer of indirection.

But that usually will create another problem.

 David Wheeler

15/09/2016 © Lero 2015 60

Go raibh maith agat!

Thank you!

ACM: The Learning Continues…

• Questions about this webcast? learning@acm.org

• ACM Learning Webinars (on-demand archive):

http://learning.acm.org/webinar

• ACM Learning Center: http://learning.acm.org

• ACM Queue: http://queue.acm.org/

mailto:learning@acm.org
http://learning.acm.org/webinar/index.cfm
http://learning.acm.org/webinar/index.cfm
http://learning.acm.org/webinar/index.cfm
http://learning.acm.org/
http://learning.acm.org/
http://queue.acm.org/

