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• Learning Center tools for professional development: http://learning.acm.org 

• 4,900+ trusted technical books and videos from O’Reilly, Morgan Kaufmann, etc. 

• 1,400+ courses, virtual labs, test preps, live mentoring for software professionals covering 
programming, data management, cybersecurity, networking, project management, more 

• 30,000+ task-based short videos for “just-in-time” learning 

• Training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, ITIL, PMI, etc.) 

• Learning Webinars from thought leaders and top practitioner 

• Podcast interviews with innovators, entrepreneurs, and award winners 

 

• Popular publications: 

• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/ 

• ACM Queue magazine for practitioners: http://queue.acm.org/ 

 

• ACM Digital Library, the world’s most comprehensive database of computing literature: 
http://dl.acm.org. 

 

• International conferences that draw leading experts on a broad spectrum of computing 
topics: http://www.acm.org/conferences. 

 

• Prestigious awards, including the ACM A.M. Turing and Infosys: http://awards.acm.org 

 

• And much more… http://www.acm.org.     

 

  
 

 

ACM Highlights 
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“     “Housekeeping” 
 
      Twitter: #ACMLearning 

 
• Welcome to today’s ACM Learning Webinar, “Evolving Critical Systems” by Mike Hinchey. The presentation 

starts at the top of the hour and lasts 60 minutes. Slides will advance automatically throughout the event. 
You can resize the slide area as well as other windows by dragging the bottom right corner of the slide 
window, as well as move them around the screen. On the bottom panel you’ll find a number of widgets, 
including Twitter, Sharing, and Wikipedia apps. 
 

• If you are experiencing any problems/issues, refresh your console by pressing the F5 key on your keyboard 
in Windows, Command + R if on a Mac, or refresh your browser if you’re on a mobile device; or close and 
re-launch the presentation. You can also view the Webcast Help Guide, by clicking on the “Help” widget in 
the bottom dock. 
 

• To control volume, adjust the master volume on your computer. If the volume is still too low, use 
headphones. 
 

• If you think of a question during the presentation, please type it into the Q&A box and click on the submit 
button. You do not need to wait until the end of the presentation to begin submitting questions. 
 

• At the end of the presentation, you’ll see a survey open in your browser. Please take a minute to fill it out to 
help us improve your next webinar experience. 
 

• You can download a copy of these slides by clicking on the Resources widget in the bottom dock. 
 

• This session is being recorded and will be archived for on-demand viewing in the next 1-2 days. You will 
receive an automatic email notification when it is available, and check http://learning.acm.org/ in a few 
days for updates. And check out http://learning.acm.org/webinar for archived recordings of past webcasts. 

 



Talk Back 

• Use Twitter widget to Tweet your favorite quotes 
from today’s presentation with hashtag 
#ACMLearning 
 

• Submit questions and comments via Twitter to 
@acmeducation – we’re reading them! 
 

• Use the sharing widget in the bottom panel to 
share this presentation with friends and 
colleagues. 
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66 Years Ago … 

5 
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EDSAC 

• 650 instructions per second.  

• 1024 17-bit words of memory in mercury ultrasonic delay 
lines.  

• Paper tape input and teleprinter output at 6 2/3 characters 
per second.  

• 3000 valves, 12 kW power consumption, occupied a room 
5m by 4m.  

• "Operating system" occupied 31 words of read-only 
memory.  

• Early use to solve problems in meteorology, genetics and 
X-ray crystallography.  
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Difference Engine 
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Motivation 

Errata, detected in Taylor’s Logarithms.  London: 4to, 1972 [sic] 

… 

Kk Co-sine of 14.18.3 – 3398 – 3298  

    Nautical Almanac 
(1832) 

… 

In the list of ERRATA detected in Taylor’s Logarithms, for cos. 4 18’ 3’’ 
read cos. 14 18’2’’.  

Nautical Almanac (1833) 

 

ERRATUM of the ERRATUM of the ERRATA of TAYLOR’S Logarithms.  
For cos. 4 18’3’’, read 14 18’ 3’’. 

Nautical Almanac (1836) 
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First Programmer 

9 

Augusta Ada King, Countess of Lovelace 



15/09/2016 ©  Lero 2015 10 10 

Software Lags behind Hardware 
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Software vs. Hardware 

• Pervasive yet non-obvious; 

 

• Abstract as opposed to “concrete”; 

 

• Perceived to be “easy to change”; 

 

• Easy-to-change means often 
changed; 

 

• Not visibly deteriorating. 
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Wear versus Deterioration 
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Major Software Failures 

• Therac 25 

 

• ARIANE 5 

 

• Mars Polar Lander 

 

• … and many many 
more! 
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The Problem 

 The problem is Complexity. 

                          

                                                    Bill Gates 
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Size of Modern Applications 

Source: Ebert & Jones, Computer, April 2009 
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Increasing Size 

Source: Ebert & Jones, Computer, April 2009 
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Challenges for Software Engineering 

•Increases in demand for greater, more complex 

functionality; 

 

•Stricter (required and desirable) constraints on 

performance and reaction times; 

 

•Attempts to increase productivity and reduce costs while 

constantly pushing requirements to the limit; 

 

•Requirement of regular change and evolving systems. 
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Evolution 

Any intelligent fool can make things bigger and more complex …  

 

It takes a touch of genius and a lot of courage to move in the 

opposite direction. 

 

   Albert Einstein 
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Evolving Systems 

At runtime, some systems 
need to adapt and evolve: 

 to react to changes in the 
environment;  

 to meet necessary 
constraints on the system 
that were not previously 
satisfied and possibly not 
previously known; 

 to protect the system from 
external threats. 

 

 19 

Legacy systems are those that 

have evolved over longer 

timeframes, due to: 

 Separate systems being 

combined together; 

 new hardware or software 

technologies being used; 

 new user requirements; 

 new regulatory compliance 

requirements. 

Software is not static 
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Critical Systems 

Financial / Enterprise 
Information Systems 

Medical Devices 

Automotive Systems 

 Systems where failure 

or malfunction will lead 

to significant negative 

consequences. 

 Strict requirements for 

security and safety to 

protect the user or 

others. 

 Critical to the 

organization’s mission, 

product base, 

profitability or 

competitive advantage.  
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Current Situation 

 Software is pervasive, widely used, and often invisible. 

 Much legacy code, badly structured, poorly maintained. 

 Many software failures, declining quality: 

 E.g., Therac 25, ARIANE 5, Mars Polar Lander, … 

and many more! 

 Complex physical environments and diverse hardware 

platforms. 

 Insufficient number of qualified developers and testers. 

 Current techniques do not scale sufficiently and have 

failed to overcome 50 years of declining quality. 
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Evolving Critical Systems 

 have evolved from legacy code and legacy systems, or  

 result from a combination of existing component-based 

systems, possibly over significant periods of time, or 

 evolve as a result of a focused and intentional change 

in organization and architecture to exploit newer 

techniques believed to be beneficial; 

 they require that the system adapt and evolve at run-

time in order to react to changes in the environment or 

to meet necessary constraints on the system that were 

not previously satisfied and possibly not previously 

known. 
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ECS 

An Evolving Critical System must be  

 

• described in a manner that enables the developer 
to understand the necessary functionality of the 
system (requirements engineering), and  

• which are expressed in a clear and precise way 
(formal specification),  

• and yet which offers sufficient flexibility to follow 
the processes and practices within the 
organisation or necessitated by the development 
process (agile methods, software processes, 
software process improvement).  
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Requirements Effort vs. Cost Overrun 

24 
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ECS 

The architecture of the system must be well understood;  

 

• the architecture may be the basis for future 
decisions on changes to be made as part of the 
evolution process; 

 

• this is particularly true where the system evolves 
at run-time (adaptive systems, autonomic 
computing, organic computing); 

 

• models of the system are a key component 
(model driven development), which will change 
over time and offer insights into potential areas of 
difficulty and as the basis for (possibly 
automated) code-generation. 



15/09/2016 ©  Lero 2015 26 26 

An ECS must be structured  

 

• in a way that change can be controlled and clear, 

• with fixed core functionality  

• and then features that may be changed, adapt, and 
even be deleted (software product lines) in order to 
support the necessary evolution.  

ECS 
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ECS 

Determining that quality and reliability are not impaired 
involves  

 

• continual overview of the development and 
evolutionary process (processes and methods, 
process evaluation);  

• ensuring that policies and constraints are met 
(autonomic computing, organic computing, adaptive 
systems);  

• collecting and recording data and evidence (metrics, 
software process improvement), and  

• computation of a range of reliability measures at 
various points in time and the appropriate analysis 
thereof (software reliability engineering). 
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ECS Research Agenda 

An ECS Research Agenda addresses several core 
research topics in the evolving critical systems field.  

 

• The central research topic is building software that  

• (a) is highly reliable, and  

• (b) retains this reliability as it evolves, without 
incurring prohibitive costs.  
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PEA+T 
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Peat 
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PEA+T 
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Sensors Effectors 

Analyze Plan 

Monitor 
Execute 

Topology 

Recent Activity Log Policy 

Calendar 
Knowledge 

Analysis Engines 

Policy Validations 

Policy Resolution 

Rules Engines 

Policy Interpreter 

Policy Transforms 

Plans Generators 

Workflow Engine 

Service Dispatcher 

Scheduler Engine 
Filters 

Simple Correlators 

Metric Managers 
Distribution Engine 

Source: IBM, AC Blueprint 2003  

MAPE   
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Some Examples of Lero ECS Research 

1. Smarter Cities 

– In conjunction with Intel Labs Europe, Dublin City Council and IBM 

2. Software Product Lines 

– Use of models to gain efficiencies 

3. Adaptive Security and Privacy (Cloud, smart buildings) 

– In conjunction with United Technologies and IBM 

4. Parallelisation of code to optimise use of multicore 

hardware 

– In conjunction with Movidius and IBM 

33 
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Some Examples of Lero ECS Research 

5. Architectural Recovery and Preservation 

– In conjunction with several financial services companies 

6. Performance Evaluation in Large Systems 

– In conjunction with IBM 

7. Autonomous Space Systems 

– In conjunction with NASA and ESA and EU FP7 Project ASCENS 

34 
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An ECS Scenario 

Space Exploration 

 

• Some of the most complex and expensive software   
applications to date. 

• High Levels of Autonomy. 

• Significant consequences for failure. 
 

 



15/09/2016 ©  Lero 2015 36 

Swarm Technologies 

• Inspired by swarms of bees and flocks of birds in 
nature; 

 

• Many application areas: 

– drug discovery; 

– communication systems;  

– environmental monitoring; 

– exploration. 

36 
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Swarm Technologies 

Coordinated swarms of smaller spacecraft will 
offer: 

 

• More effective use of solar power; 

 

• Access to areas where large craft could not go; 

 

• Ability to perform more complex tasks;  

 

• Greater accuracy and flexibility. 

37 
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Autonomous NanoTechnology Swarm 

 

Using swarms  of “intelligent”, autonomous spacecraft to 
explore 

 

1. Lunar and Martian surface (Lander Amorphous Rover 
Antenna, LARA) 

2. Saturn’s rings (Saturn Autonomous Ring Array, SARA) 

3. Asteroid belt (Prospecting Asteroid Mission, PAM) 

 

 

38 



15/09/2016 ©  Lero 2015 39 39 

ANTS Concept Mission - PAM 
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Contributions 

1. Formal Methods 

 

2. Autonomic Computing 

 

3. Software Product Lines 

 

4. Automatic Code Generation 

40 
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Model of Formal Method 
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Specification 



15/09/2016 ©  Lero 2015 43 

Autonomic Computing   

Rest and Digest 

sympathetic  

(SyNS)  

parasympathetic  

(PaNS)  

                             Fight or Flight 

Inspiration from the human/mammalian autonomic nervous 

system. 

43 



15/09/2016 ©  Lero 2015 44 Autonomic Agent (Mobile agent) Autonomic Agent Apoptosis Controls   

The Autonomic Environment 

AE 

Autonomic Communications Channel 

MC 

AM 
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ALice 
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SPL / Feature Model 
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Requirements to Design to Code (R2D2C) 

Requirements 

expressed as 

scenarios 

Code Models 
Existing code 

generating tools 

Existing model 

extraction (reverse 

engineering) tools 

Mathematical laws 

of concurrency 

(reversed) 
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Current Status 
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Benefits of the Method 

• Automation of entire development process; 

• Significant increase in quality; 

• Ability to do formal proof on properties of 
implementations; 

• Ability to do formal proof of correctness;  

• Automated means for requirements analysis; 

• Guaranteed correspondence between requirements 
and their implementation as code. 

 

48 
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Applications 

• End-to-end automatic code generation of provably correct 

systems; 

• Automatic reimplementation after any requirements 

change; 

• Exploiting re-use across platforms; 

• Reverse engineering legacy systems to a mathematically 

sound model; 

• Analysis and documentation of existing systems (e.g., 

expert systems); 

• Re-engineering of legacy systems to a provably correct 

new implementation. 

49 
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Domains (to date) 

• Agent Based Systems;  

• Wireless Sensor Networks ; 

• ANTS; 

• Verification of Robotic Procedures (cf. Hubble Space 

Telescope Robotic Servicing Mission). 

50 
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HRSM Procedures 
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HRSM Procedures 
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Caveat 
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Conclusions 

• Software must evolve. 

• There is a tension between reliability, predictability 

and cost and this need for evolution. 

• There is a need for an Evolving Critical Systems 

research effort. 

• Lero and others are driving that effort. 
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Any problem in computer science can be solved with another 

layer of indirection.  

But that usually will create another problem. 

 

                                                                                David Wheeler      
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Go raibh maith agat! 

Thank you! 



ACM: The Learning Continues… 

• Questions about this webcast? learning@acm.org 

 

• ACM Learning Webinars (on-demand archive): 

http://learning.acm.org/webinar 

 

• ACM Learning Center: http://learning.acm.org 

 

• ACM Queue: http://queue.acm.org/ 
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