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Distributed Computing
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tributed Computing

* Divide work among many machines

» Coordinated central or decentralized
e Examples:

e Genomics: 100s machines working
on a dataset

« Web Service: 10 machines each
taking 1/10th of the web traffic for
StackExchange.com

« Storage: xx,000 machines holding
all of Gmail’s messages



Distributed computing can
do more “work” than the
largest single computer.

More storage.

More computing power.
More memory.

More throughput.




Mo’ computers, Mo’ problems

Thousands of Users
* Bigger risks
e Failures more visible
* Automation mandatory

e Cost containment
becomes critical



Mo’ computers, Mo’ problems

Thousands of Users In response: Radical ideas on
* Bigger risks * Reducing risk / Improve safety

* Failures more visible * Reliability becomes a

» Automation mandatory ~ competitive differentiator
e Cost containment * New automation paradigms

becomes critical e Cost and economics




Make peace with failure

Parts are impertect
Networks are imperfect
Systems are imperfect
Code is imperfect
People are imperfect
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Buy the best, most reliable computer
in the world. It is still going to falil.

It It doesn’t, you'll still need to take it
down for maintenance.



3 ways to fail better

1. Use cheaper, less reliable, hardware.
2. |If a process/procedure is risky, do it a lot.

3. Don’t punish people for outages.



Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.
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Reliability through software

e Resiliency through software:

» Costs to develop. Free to deploy.

* Resiliency through hardware:

» Costs every time you buy a new machine.



$S
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Best hardware.

Write code so
that the system is
distributed.

$3$

Double-spending



Desl hardware.

Write code so
that the system is
distributed.

Uouhle-spending
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These techniques
work for large
grids of
machines...

...and every-day
systems too.



overhead overhead



The right amount of
reslliency 1S good.
oo much Is a waste.

Aim for an SLA target so you know when to stop.



Load balancing &
redundancy Is just one
way to achieve resiliency.



The cheapest
way to buy
terabytes of RAM.



Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.



Fail Better Part 2 of 3:

f a process/procedure
IS risky, do it a lot.



Risky behavior
VS.
Risky procedures



Risky Behaviors are
iINnherently risky

e Smoking
e Shooting yourselt in the foot
* Blindfolded chainsaw juggling



\

Risky behavior is risky.



Risky Processes can be
improved through practice

» Software Upgrades

* Database Fallovers

* Network Trunk Faillovers
* Hardware Hot Swaps



StackExchange.com
Failover from NY or Oregon

~ redis

e StackExchange.com has
a “DR” site in Oregon.

e StackExchange.com

runs on SQL Server with
“AlwaysOn” Availability
Groups plus...

Redis, HAproxy, ISC
BIND, CloudFlare, IS,
and many home-
grown applications



Process was risky

* Took 10+ hours
* Required "hands on” by 3 teams.
 Found 30+ "Improvements needed”

* Certain people were S.P.O.F



Drill Results

Bugs o
Filed 30

Hours (o)
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Drill Results

Bugs
Filed 30

20

Hours 12



Drill Results

Bugs
Filed 30

20

Hours 12



Why??

e Each drill "surfaces” areas of improvement.

 Each member of the team gains
experience and builds confidence.

e “Smaller Batches” are better



Software Upgrades

e Distributed Computing

e Traditional

Months of planning
Incompatibility issues
Very expensive

Very visible mistakes

By the time we're done,
time to start over again.

High frequency (many
times a day or week)

Fully automated
Easy to fix failures

Cheap... encourages
experiments



‘Big Bang” releases
are inherently risky.



Small batches are better

Fewer changes each batch:

e |f there are bugs, easier to identity source
Reduced lead time;:

* |t IS easler to debug code written recently.
Environment has changed less:

e Fewer “external changes” to break on
Happier, more motivated, employees:

* [nstant gratification for all involved



Risk Is inversely proportional to
how recently a process has

been used

MOost least
risky risky
less more
recent recent

Backups Software Continuous -8 Web

that have

Upgrades Software servers

never  every 3 Deblovment that fail all

been years PIOY the time

restored



Netflix “Chaos Monkey”

- Randomly reboots machines.
1 amazon “ - Keeps Netflix “on its toes”.
‘ - Part of the Simian Army:

e Chaos Monkey (hosts)

e Chaos Kong (data centers)

e [atency Monkey (adds random
performance delays)




Fail Better Part 2 of 3:

f a process/procedure
IS risky, do it a lot.



Fail Better Part 3 of 3:

Don't punish
people for outages.



There will always
oe outages.



I'nere will always
be OUt Make peace with failure

Parts are imperfect

Networks are imperfect

Systems are imperfect

People are imperfect




equivalent
to expecting them to
hever happen...
which is




Out-dated attitudes about outages

e Expect pertection: 100% uptime
* Punish exceptions:

e fire someone to “prove we're serious’
e Results:

* People hide problems

 People stop communicating

e Discourages transparency

 Small problems get ignored, turn into big
problems




New thinking on outages

e Set uptime goals: 99.9% +/- 0.05

* Anticipate outages:
o Strategic resiliency techniques, oncall system
e Drills to keep in practice, Improve process

* Results:
* Encourages transparency, communication

 Small problems addressed, fewer big
olfe]ellcIagls

* Over-all uptime improved



Thereis noroof cause. | There are only
Contributing
Factors

John Allspaw
http://www.kitchensoap.com/2012/02/10/each-necessary-but-only-jointly-sufficient/



After the outage, publish a
postmortem document

 People involved write a "blameless postmortem”
* |dentifies what happened, how, what can be done

to prevent similar problems in the f

* Published widely internally and ex

U

€

Lture.

nally.

* |nstead of blame, people take responsibility:
* Responsibility for implementing long-term fixes.
* Responsibility for educating other teams how to

learn from this.



Outage Post-Mortem - 2014-08-25/0Outage

Summary:

On Aug 25, 2014 there was an outage of all web properties (Core and Careers) from 3:27pm
to 3:32pm NYC-time (approx 7 minutes). The cause was an incorrect change to security
settings. The solution was to revert the change via Puppet. Measures being implemented to
prevent this problem in the future are listed below.

D Tyos

Outage Timeframe 2014-08-25 19:24, about 7m of downtime

Bad change to firewall rules.

Recommendations Need to refactor firewall rules to be more easy to
understand and update; Need to develop better testing
methods for firewall rulesets.

Background Information

The intended change: SRE was attempting to update the firewall rules to to permit internal
openid calls to work directly rather than going out to the internet and back in.




Outage Schedule of Events

2014-08-25 19:01 da2d38d6a Change pushed to Git
2014-08-25 19:26 Puppet runs on ny-1b05 (pushed bad change / outage BEGINS)
2014-08-25 19:27 Pagerduty and Pingdom page oncall (Tom)

2014-08-25 19:27 @David asked "Who broke everything but chat?" on SRE-team
2014-08-25 19:27 da2d38d6al1 Revert pushed to Git

2014-08-25 19:30 Puppet runs on ny-Ib06 (pushed revert)

2014-08-25 19:32 Puppet runs on ny-Ib05 (pushes revert) (outage RESOLVED)




Things that went Right

e Use of version control with Puppet means we are able to revert bad changes quickly.
e Everyone worked together to find and fix the problem.

Processes Needing Improvement

e Firewall rules should be refactored to be easier to understand and update.
e Firewall rules need a better testing method.

Immediate to do

e Improve comments in iptables files (there are wrong and misleading comments)
(Done: b55e654d9f)

Long term to do

e Move LB firewalls to the new structure being developed.
e Establish better testing methodology for firewall changes.




| dunno about anybody else, but | really like
getting these post-mortem reports. Not only
'S it nice to know what happened, but it's

also great to see how you guys handled it

in the moment and how you plan to
prevent these events going forward. Really
neato. Thanks for the great work :)

—-Anna




Fail Better Part 3 of 3:

Don't punish
people for outages.



lake-nomes

* “cloud computing” = “distributed computing”
1. Use cheaper, less reliable, hardware

e Create reliability through software (when

possible)

* Pay only for the reliability you need
2. If a process/procedure is risky, do it a lot

e Practice makes perfect

e “Small Batches” improves quality and morale
3. Don’t punish people for outages

* Focus on accountability and take responsibility
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...there’s more like it In
http://the-cloud-book.com

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

Save 35%
www.informit.com/TPOSA
Discount code TPOSA35

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



Q&A



ACM: The Learning Continues...

 Questions about this webcast?
learning@acm.org

« ACM Learning Webinars (on-demand
archive): http://learning.acm.org/webinar

« ACM Learning Center:
http://learning.acm.org

« ACM SIGMIS: hitp://sigmis.org/

« ACM Queue: hitp://queue.acm.org/



mailto:learning@acm.org
http://learning.acm.org/
http://sigmis.org/
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