Fail Better: Radical Ideas
from the Practice of Cloud
Computing

Tom Limoncelli

Stack Overflow

ACM Highlights

» Learning Center tools for professional development: http://learning.acm.org
« 4,500+ trusted technical books and videos by O’ Reilly, Morgan Kaufmann, etc.

* 1,300+ courses, virtual labs, test preps, live mentoring for software professionals covering
programming, data management, cybersecurity, networking, project management, more

* Training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, ITIL, PMI, etc.)
* Learning Webinars from thought leaders and top practitioner
* Podcast interviews with innovators, entrepreneurs, and award winners

 Popular publications:
* Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/
* ACM Queue magazine for practitioners: http://queue.acm.org/

« ACM Digital Library, the world’s most comprehensive database of computing literature:
http://dl.acm.org.

* International conferences that draw leading experts on a broad spectrum of computing
topics: http://www.acm.org/conferences.

* Prestigious awards, including the ACM A.M. Turing and Infosys: http://awards.acm.org

e And much more... http://www.acm.orq.

Radical |[deas from
The Practice of Cloud

System Administration

g Tom Limoncelli, SRE

THE PRACTICE OF

CLOUD SYSTEM Stack Exchange, Inc
ADMINISTRATION

DESIGNING AND OPERATING NeW York Clty

LARGE DISTRIBUTED SYSTEMS

the-cloud-book.com
@YesThatTom

www.informit.com/TPOSA
Discount code TPOSA35

Who is Tom Limoncelli”?

Sysadmin since 1988 b VOLUME 2

,-

Worked at Google, AT&T/Bell Labs UlaJ3 FYSSUIISS 1O

r | »>

and many more. CLO!I UT méVjW EM -
ADMINISTRATION

SRE at Stack Exchange, Inc (NYC) DESIGNING AND OPERATING

http://careers.stackoverflow.com LARGE DISTRIBUTED SYSTEMS

Blog: EverythingSysadmin.com

Twitter: @YesThatTom

The Practice of : : Practice of
System and Network . [T secns System and Network
Administration o ' Administration

FOOLS' DAY
me

Management

THOMAS A. LIMONCELLI * STRATA R. CHALUP < CHRISTINA J. HOGAN

N

VOLUME 2 g

THE PRACTICE OF
CT1OITD SVYSTEN/
N JﬁL/(l:v /l U/]&_l ’J 'Q)] (5\‘__\:) ’—1 L]'E j!\\ A\
J,//r“&}_ﬁD‘f \ /AL, 1 Lt\\l\{ 10 1[.ﬁ\;m.;s’é‘s; L A (;____f) J_\‘\

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

- = /‘““"—M._,_AA"*‘\AJ%/W
|

B o

return

M A
QW"—-“W‘M'MW“‘M“ w'“l‘wll\\mw/

THOMAS A. LIMONCELLI * STRATA R. CHALUP ¢ CHRISTINA J. HOGAN

PartI Design: Building It 7

Chapter1 Designing in a Distributed World 9
Chapter2 Designing for Operations 31
Chapter 3 Selecting a Service Platform 51
Chapter4 Application Architectures 69
Chapter 5 Design Patterns for Scaling 95
Chapter 6 Design Patterns for Resiliency 119
Part I Operations: Running It 145
Chapter 7 Operations in a Distributed World 147
Chapter 8 DevOps Culture 171
Chapter 9 Service Delivery: The Build Phase 195
Chapter 10 Service Delivery: The Deployment Phase 211
Chapter 11 Upgrading Live Services 225
Chapter 12 Automation 243
Chapter 13 Design Documents 275
Chapter 14 Oncall 285
Chapter 15 Disaster Preparedness 307
Chapter 16 Monitoring Fundamentals 331
Chapter 17 Monitoring Architecture and Prad AppendixA Assessments

Chapter 18 C ap acity Pl anning Appendix B The Origins and Future of Distributed Computing

and Clouds

Chapter 19 Creating KPIs
Chapter 20 Operational Excellence
Epilogue

Appendix C Scaling Terminology and Concepts
Appendix D Templates and Examples

Appendix E Recommended Reading

The Cloud

1The
Cloooooouud

1he

The
Cloud!!1l!

We
<nheart>
The Clouo

The cloud solves
all problems.

OO0 000000000

OuQC
OuQG
OuQG
OuQC
OuQG
OuQG
OuQC
OuQG
OuQG
OuQC

OuQG

O O O O 00000 OO O

OuUQG
OuQC
OuQC
OuQG
OuQC
OuQC
OuQG
OuQC
OuQC
OuQG

OuQG

O O O O 00000 OO O

OUuQG
OUuQC
OUuQG
OUuQG
OuUQC
OUuQG
OUuQG
OuUQC
OUuQG
OUuQG

OuUQC

O O O O 000000 O

oud cC
oud ¢
oud cC
oud cC
oud ¢
oud cC
oud cC
oud ¢
oud cC
oud cC
oud ¢

oud cC
oud ¢
oud cC
oud cC
oud ¢
oud c
oud cC
oud ¢
oud c
oud cC
oud ¢

OuQC
OuQG
OuQG
OuQC
OuQG
OuQG
OuQC
OuQG
OuQG
OuQC

OuQG

O O OO0 0000000

OuQC
OuQG
OuUQG
OuQC
OuQG
OuUQG
OuQC
OuQG
OuUQG
OuQC
Ooud.

Distributed Computing

HULSTSSIH4HI/ONUINGWNOD 40, _.:_u NN EIHNOILENEASILEN0D

. ..W“QV vansallsaspe
L= . "eee » e . :
-ﬂﬂuwcos oMm zl*bﬂoasnﬂwﬁ w
ikbicA Lk $e8881= 050e)
Heswwew ronons N aanse
LT F d CERBELURARR e
9 .. T rT Y YT IR AT I
%ws* &q«g SASARARRAEn s
,Fev ..‘ T AR AN an

CF R >

.
\

m
i
g

v m %S%%CQ.? I‘% a&.CQQOOMiﬁo
ceEe < fiﬁﬁ %9@“ SR L LLF "EB e
eeeltveceellcterptVonson]|ronnallansas

roel popouk opnunionnun| (o oyun|E vagp

¢ or § point to optiod

ENTER select optied

Client Server Network

Printers

A

» Blakberry
Backup Unit

N RN ’7.:/.4/..((.«(({ Y WAL YA v
/ / / / A l 4/ LI ' 0 ' \ ! '

»

.////ll/lc,.".'......‘

N (I.V‘fv ov.lvar!v A u”l.,“) R <
r///// % EY Yt bVt

. - . . < n

3:.

ﬂr// ,///4//../;,, R
OO 4,&,4/.}" XX 4',4

“‘ — N

”V
AR hN S hRRaal ,4/ AN R Ny

/'#Afﬁc/#rwuﬁ //;«uﬂ.v./
S S § w#w S Mﬂ; AR N. .|.

'l'

4
d
4
]
i
/
,
/
y /‘
DN A
Y A
~
-
3.
r
‘4
" 4
e
/
“
/" "' J
7 .
At" 'ft\
> ", l’ .
'44‘/
- -

’II/IIIIIIIIIIlllllll‘ll FRERARAAAAARRA RS
722200 PEEEEEE TR A AR AR

277/7720000 0T H R LA LN

B]

n

tributed Computing

* Divide work among many machines

» Coordinated central or decentralized
e Examples:

e Genomics: 100s machines working
on a dataset

« Web Service: 10 machines each
taking 1/10th of the web traffic for
StackExchange.com

« Storage: xx,000 machines holding
all of Gmail’s messages

Distributed computing can
do more “work” than the
largest single computer.

More storage.

More computing power.
More memory.

More throughput.

Mo’ computers, Mo’ problems

Thousands of Users
* Bigger risks
e Failures more visible
* Automation mandatory

e Cost containment
becomes critical

Mo’ computers, Mo’ problems

Thousands of Users In response: Radical ideas on
* Bigger risks * Reducing risk / Improve safety

* Failures more visible * Reliability becomes a

» Automation mandatory ~ competitive differentiator
e Cost containment * New automation paradigms

becomes critical e Cost and economics

Make peace with failure

Parts are impertect
Networks are imperfect
Systems are imperfect
Code is imperfect
People are imperfect

| earn how to

AL

Be | 1ER

T L

sk

Y e

e
({11}

i
TeuRsl|

Buy the best, most reliable computer
in the world. It is still going to falil.

It It doesn’t, you'll still need to take it
down for maintenance.

3 ways to fail better

1. Use cheaper, less reliable, hardware.
2. |If a process/procedure is risky, do it a lot.

3. Don’t punish people for outages.

Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.

THETG4

yo.zcs. Dudget
¥/ / K/ B i

AVIS

,‘ -/ i ! « Loss-damage waiver
Liability

Budget
""'.rif""' g Personal accident

Insurance

AV/S

Personal effects coverage

rent-a-car

5 . I E * Loss-damage waiver
Liability

Budget
"""fi'""" g Personal accident

Insurance

AVIS

— — W

Personal effects coverage

,‘ -/ i ! « Loss-damage waiver
Liability

Budget
""'.rif""' g Personal accident

Insurance

AV/S

Personal effects coverage

rent-a-car

(HOMEQWNERS & |
INSURANGE §

L y I ! « Loss-damage waiver
Liability

Budget
"""fi'""" g Personal accident

Insurance

AV/S

Personal effects coverage

rent-a-car

L y Z ! « Loss-damage waiver
Liakiil

vo.zcs. DBudget

' ¥77 X7 ¥ e Persoliadaccidin

INSara gz

AV/S

Personal effects coverage

Reliability through software

e Resiliency through software:

» Costs to develop. Free to deploy.

* Resiliency through hardware:

» Costs every time you buy a new machine.

$S
$S

Best hardware.

Write code so
that the system is
distributed.

3

Double-spending

Desl hardware.

Write code so
that the system is
distributed.

Uouhle-spending

F v
P BEER REk RO BESk

l

o __\
I
|

IIII \

These techniques
work for large
grids of
machines...

...and every-day
systems too.

overhead overhead

The right amount of
reslliency 1S good.
oo much Is a waste.

Aim for an SLA target so you know when to stop.

Load balancing &
redundancy Is just one
way to achieve resiliency.

The cheapest
way to buy
terabytes of RAM.

Fail Better Part 1 of 3:

Use cheaper, less
rellable, hardware.

Fail Better Part 2 of 3:

f a process/procedure
IS risky, do it a lot.

Risky behavior
VS.
Risky procedures

Risky Behaviors are
iINnherently risky

e Smoking
e Shooting yourselt in the foot
* Blindfolded chainsaw juggling

\

Risky behavior is risky.

Risky Processes can be
improved through practice

» Software Upgrades

* Database Fallovers

* Network Trunk Faillovers
* Hardware Hot Swaps

StackExchange.com
Failover from NY or Oregon

~ redis

e StackExchange.com has
a “DR” site in Oregon.

e StackExchange.com

runs on SQL Server with
“AlwaysOn” Availability
Groups plus...

Redis, HAproxy, ISC
BIND, CloudFlare, IS,
and many home-
grown applications

Process was risky

* Took 10+ hours
* Required "hands on” by 3 teams.
 Found 30+ "Improvements needed”

* Certain people were S.P.O.F

Drill Results

Bugs o
Filed 30

Hours (o)

Drill Results

Bugs
Filed \

20

Hours
‘%\o

5

Drill Results

Bugs
Filed 30

20

Hours 12

Drill Results

Bugs
Filed 30

20

Hours 12

Why??

e Each drill "surfaces” areas of improvement.

 Each member of the team gains
experience and builds confidence.

e “Smaller Batches” are better

Software Upgrades

e Distributed Computing

e Traditional

Months of planning
Incompatibility issues
Very expensive

Very visible mistakes

By the time we're done,
time to start over again.

High frequency (many
times a day or week)

Fully automated
Easy to fix failures

Cheap... encourages
experiments

‘Big Bang” releases
are inherently risky.

Small batches are better

Fewer changes each batch:

e |f there are bugs, easier to identity source
Reduced lead time;:

* |t IS easler to debug code written recently.
Environment has changed less:

e Fewer “external changes” to break on
Happier, more motivated, employees:

* [nstant gratification for all involved

Risk Is inversely proportional to
how recently a process has

been used

MOost least
risky risky
less more
recent recent

Backups Software Continuous -8 Web

that have

Upgrades Software servers

never every 3 Deblovment that fail all

been years PIOY the time

restored

Netflix “Chaos Monkey”

- Randomly reboots machines.
1 amazon “ - Keeps Netflix “on its toes”.
‘ - Part of the Simian Army:

e Chaos Monkey (hosts)

e Chaos Kong (data centers)

e [atency Monkey (adds random
performance delays)

Fail Better Part 2 of 3:

f a process/procedure
IS risky, do it a lot.

Fail Better Part 3 of 3:

Don't punish
people for outages.

There will always
oe outages.

I'nere will always
be OUt Make peace with failure

Parts are imperfect

Networks are imperfect

Systems are imperfect

People are imperfect

equivalent
to expecting them to
hever happen...
which is

Out-dated attitudes about outages

e Expect pertection: 100% uptime
* Punish exceptions:

e fire someone to “prove we're serious’
e Results:

* People hide problems

 People stop communicating

e Discourages transparency

 Small problems get ignored, turn into big
problems

New thinking on outages

e Set uptime goals: 99.9% +/- 0.05

* Anticipate outages:
o Strategic resiliency techniques, oncall system
e Drills to keep in practice, Improve process

* Results:
* Encourages transparency, communication

 Small problems addressed, fewer big
olfe]ellcIagls

* Over-all uptime improved

Thereis noroof cause. | There are only
Contributing
Factors

John Allspaw
http://www.kitchensoap.com/2012/02/10/each-necessary-but-only-jointly-sufficient/

After the outage, publish a
postmortem document

 People involved write a "blameless postmortem”
* |dentifies what happened, how, what can be done

to prevent similar problems in the f

* Published widely internally and ex

U

€

Lture.

nally.

* |nstead of blame, people take responsibility:
* Responsibility for implementing long-term fixes.
* Responsibility for educating other teams how to

learn from this.

Outage Post-Mortem - 2014-08-25/0Outage

Summary:

On Aug 25, 2014 there was an outage of all web properties (Core and Careers) from 3:27pm
to 3:32pm NYC-time (approx 7 minutes). The cause was an incorrect change to security
settings. The solution was to revert the change via Puppet. Measures being implemented to
prevent this problem in the future are listed below.

D Tyos

Outage Timeframe 2014-08-25 19:24, about 7m of downtime

Bad change to firewall rules.

Recommendations Need to refactor firewall rules to be more easy to
understand and update; Need to develop better testing
methods for firewall rulesets.

Background Information

The intended change: SRE was attempting to update the firewall rules to to permit internal
openid calls to work directly rather than going out to the internet and back in.

Outage Schedule of Events

2014-08-25 19:01 da2d38d6a Change pushed to Git
2014-08-25 19:26 Puppet runs on ny-1b05 (pushed bad change / outage BEGINS)
2014-08-25 19:27 Pagerduty and Pingdom page oncall (Tom)

2014-08-25 19:27 @David asked "Who broke everything but chat?" on SRE-team
2014-08-25 19:27 da2d38d6al1 Revert pushed to Git

2014-08-25 19:30 Puppet runs on ny-Ib06 (pushed revert)

2014-08-25 19:32 Puppet runs on ny-Ib05 (pushes revert) (outage RESOLVED)

Things that went Right

e Use of version control with Puppet means we are able to revert bad changes quickly.
e Everyone worked together to find and fix the problem.

Processes Needing Improvement

e Firewall rules should be refactored to be easier to understand and update.
e Firewall rules need a better testing method.

Immediate to do

e Improve comments in iptables files (there are wrong and misleading comments)
(Done: b55e654d9f)

Long term to do

e Move LB firewalls to the new structure being developed.
e Establish better testing methodology for firewall changes.

| dunno about anybody else, but | really like
getting these post-mortem reports. Not only
'S it nice to know what happened, but it's

also great to see how you guys handled it

in the moment and how you plan to
prevent these events going forward. Really
neato. Thanks for the great work :)

—-Anna

Fail Better Part 3 of 3:

Don't punish
people for outages.

lake-nomes

* “cloud computing” = “distributed computing”
1. Use cheaper, less reliable, hardware

e Create reliability through software (when

possible)

* Pay only for the reliability you need
2. If a process/procedure is risky, do it a lot

e Practice makes perfect

e “Small Batches” improves quality and morale
3. Don’t punish people for outages

* Focus on accountability and take responsibility

HOW TO IMPLEMENT

MANUFACTURING

—-
. >
p—
S

Home Life

Covered Deck
T % 14!

KV\’alk—m
_Closet ./
Master Bedrm

1.5 %12/

O O
Q0O
Kitchen

je/mcn _

E,
Bath €</

oXo),

E T - ——c CTTrT T T 3

Entrance

Living Room

Bedroom #2
' 18/ x17.5¢

11 % 10.5"

=

Radical |[deas from
The Practice of Cloud

System Administration

f v & ; v
VOLUME 2

THE PRACTICE OF
CLOUD SYSTEM

ADMINISTR ATION Tom Limoncelli, SRE

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

StackExchange.com

the-cloud-book.com
@YesThatTom

very Reasonablé| |deags from
The Practice of Cloud
System Administration

7 7 3 ‘4-'
VOLUME 2

THE PRACTICE OF

CLOUD SYSTEM
ADMINISTRATIONY Tom Limoncelli, SRE

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

StackExchange.com

the-cloud-book.com
@YesThatTom

L
VVVVVVV

If you liked this talk...

...there’s more like it In
http://the-cloud-book.com

DESIGNING AND OPERATING
LARGE DISTRIBUTED SYSTEMS

Save 35%
www.informit.com/TPOSA
Discount code TPOSA35

AA

Q&A

ACM: The Learning Continues...

 Questions about this webcast?
learning@acm.org

« ACM Learning Webinars (on-demand
archive): http://learning.acm.org/webinar

« ACM Learning Center:
http://learning.acm.org

« ACM SIGMIS: hitp://sigmis.org/

« ACM Queue: hitp://queue.acm.org/

mailto:learning@acm.org
http://learning.acm.org/
http://sigmis.org/

	Slide Number 1
	Fail Better: Radical Ideas from the Practice of Cloud Computing
	Slide Number 3
	Slide Number 4
	Slide Number 5
	ACM: The Learning Continues…

