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Exploring Quantum Possibilities

Quantum hardware is evolving i Il 1.._”"7
rapidly, with many approaches i Ao
being pursued o | U !

Even individual qubits exhibit day- s,
to-day performance variability §

http://topocondmat.org/
‘ ' w2_majorana/braiding.html
http://www.quantumoptics.at



Exploring Quantum Possibilities

QISKit goal is to provide an T Il e
open-source platform for il
building quantum programs that ‘
can keep up with changing
hardware

http://topocondmat.org/
w2_majorana/braiding.html

http://www.quantumoptics.at



Quantum Information Software Kit.

Is an open source software development kit for writing
guantum computing experiments, programs, and
applications.



Pull requests Issues Marketplace Explore

O This organization

QISKit

Quantum Information Software Kit

http://www.qiskit.org giskit@qiskit.org

Repositories 9 People 33 Teams 4 Projects 0 Settings

Pinned repositories Customize pinned repositories
= qiskit-sdk-py = qiskit-tutorial = opengasm
Software development kit for writing quantum A collection of Jupyter notebooks using QISKit Gate and operation specification for quantum
computing experiments, programs, and circuits
applications.
@Python W11k ¥310 @ Jupyter Notebook W 173 ¥75 @TeX w152 Y42

= ibmqgx-backend-information

Information about the different backends on the
IBM Q experience

w54 %26

= ibmgx-user-guides

The users guides for the IBM Q experience

®HTML W28 ¥18



O This repository  Search Pull requests Issues Marketplace Explore

L QISKit / giskit-sdk-py ®Unwatch~ 172 Y Unstar 1112 = ¥Fork 310
<> Code Issues 18 Pull requests 7 Projects 0 Wiki Insights Settings

Software development kit for writing quantum computing experiments, programs, and applications. http://www.qgiskit.org Edit

quantum-computing qgiskit sdk python quantum-programming-language Manage topics
P 1,175 commits ¥ 2 branches © 20 releases 4% 42 contributors sz Apache-2.0

| Branch: master v II New pull request Create new file = Upload files = Find file Clone or download ~
3 atilag Bug fix: Remove static compilation of the simulator because it's -~ Latest commit @a312fe an hour ago
B .github Add templates for issues and pull requests 6 months ago
i doc Add change log for release 0.4.0. (#229) 6 hours ago
B examples Style and fixes for initializer 13 days ago
i images Update Sphinx theme color and diagrams 3 months ago
B qiskit Merge pull request #194 from chriseclectic/cpp-simulator 6 hours ago
@8 src/cpp-simulator Bug fix: Remove static compilation of the simulator because it's an hour ago

| test Merge pull request #194 from chriseclectic/cpp-simulator 6 hours ago



giskit.org

english / japanese

QISKit
Quantum Information Software Kit

X Join our Slack community

Approximate Quantum Computing: From advantage to applications
Recordings now available!

Latest version o» Learn Run a quantum program
The Quantum I'nfnrmatlon Soft\t.'are I.(It (QISKit for short) is a software Use QISKit to create quantum computing pmgram.s, compile them, Ipython3] § pip install giskit
development kit (SDK) for working with OpenQASM and the IBM Q and execute them on one of several backends (online Real guantum
experience (QX). processors, and simulators).
from qiskit import QuantumProgram
gp = QuantumProgram()
qr = gp.create_quantum_register('qr',2)
cr = gp.create_classical_register('cr',2)
GitHub Tutorials qc qulcreate_circuit['Bell'.[qu.icr}?
qc.hiqriel)
gc.cx(qrle], gr(1])
qgc.measure(qr[@], criel)
Road map Documentation : P
qc.measure(qrll]l, cri1])

result = gp.execute('Bell')
print(result.get_counts('Bell'))

IBM Q experience

Python 3.5+ required, see more in the docs



#release0_4 ® & ‘ Q Search ] @ w

72| 28| %R0 | todiscuss the 0.4 release

R Wednesday, January 3rd
¢ device-file-schema
# documentation M Jay Gambetta
# general @Chris Wood it looks good to me but i agree with comments @Juan Gémez made do
t ibmgx5 you think you can address them today
- |atex drawer Posted in #release0 4 Jan 3rd at 10:15 AM
# openpulse @Juan Gomez @erick winston do you know if there is anyway in the build to get it to try and build the simulator with gcc if available
+ opengasm on macOS, and fall back to xcode/clang? (the gcc | use personally is the commented out g++-7). The gcc build is needed to use all the
¢ qobj-interface multithreading / parallelisation options
# random Thursday, January 4th

releaseQ_4

¢ sdk Juan Gomez 4:00 AM

simulators @Chris Wood yep, | think we could try different compilers in the Makefile before building, I'll take a look

SYIND\/‘IJE!CREHCIS 0 Andreas 7:15 PM

t3onls - joined #release0_4.
i S
# transpiler Today

# tutorials

a Juan Gémez 9:57 AM
Direct Messages v Release 0.4 is out! (22

slackbot o 1
jaygambetta (you) Our next release will be 0.5, so the master branch points to it.

erick winston




Overview S

Why Is quantum computing exciting?
Why Now?
To solve problems that are intractable for classical computers
Fault-tolerant vs approximate quantum computing

What does QC look like today?

IBM Q superconducting hardware

QISKit



he Road to Quantum Advantage

Quantum Quantum Quantum

Science Advantage

May 2016
A

IBM Q Network
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Exponential scaling

There's a famous legend outlined in “IBM Mathematics Peep Show”

The inventor of chess showed it to the emperor of India, and the emperor was so impressed
he said "Name your reward!"

The man responded. "Oh emperor, my wishes
are simple. | only wish for this. For the next 64
days | will come back and for the first day please
only give me one grain of rice for the first square
of the chessboard, on the second day two grains
for the next square, four for the next, eight for the
next and so on for all 64 squares, with each
square having double the number of grains as
the square before."

The emperor agreed, amazed that the man had
asked for such a small reward - or so he thought.


https://www.youtube.com/watch?v=t3d0Y-JpRRg

On the first day...

Photo: thepowerofimpossibility.com



After one week...127 grains of rice




After one month... 1,070,000,000 grains of rice




After 64 days ... 535 billion metric tons of rice




Limitations of conventional computers

There are many intractable problems where the best known algorithm has
runtime that scales exponentially with input size

NP
“Hard” problems (exponential)

P

“Easy” Problems
(Polynomial

® Linear'Programming




A new model of computation

a physical system in a perfectly definite state can still behave randomly

two systems that are too far apart to influence each other can nevertheless behave in ways
that, though individually random, are somehow strongly correlated.

Quantum Applications is about working out how to use these two
principles in a new model of computation



Superposition

Q1 [0

Runs 1024 Show Qsphere Download CSV

0.875
0.75
0.625

0.525
0475

0.375
0.25

0.125

0 ]

The outcomes appear to be random



Superposition




Superposition

oo E—EIHED

Runs 1024 Show Qsphere Download CSV

1 0.993

0.875

0.625
0.5
0.375
0.25

0.125
0.007
1

Doing it twice makes it certain again. Can not be a classical random mixture



Entanglement

Qi [0

Qy |0}

an B E-E—

@7 |0)




Entanglement

Q1 oo Bl é g A

Q, o) Q@7 |0)

Runs 4096
!

0.525 0.475 o 0.542

I I 0.458
0.375 I
0
0 1

gubit 1 it has no information about the quantum state. It is not superposition or a
computational state.



Entanglement

Runs 4096

0.875

0.75
0.625

0.5 0.483
0.375
0.25
0.125

0.031 | 0.018

0 = S
00 o1 10

Correlated in the computational basis

Show Qsphere

Download CSV

0.468

11



Entanglement

Runs 4096
0.875
0.75
0.625
i 0.530
0.375
025
0.125
0.028 0.032
0 = ===1
00 01 10

Correlated in the superposition basis

Download CSV

0.410

11



Quantum Computing and Quantum Circuits |

My First Score /' Add a description

Switch to Qasm Editor Backend: Custom Topology My Units: 56 @ Experiment Units: 3 @

alol 0 —el

BARRIER OPERATIONS




Quantum Computing and Quantum Circuits |

A quantum computation: ‘¢/> p— U|¢> for all U -~ SU(Qn)

1000 U, p,\) :== et N/2cos(0/2) —e 07N/ 25in(0/2)
: 10100 _ _ el @=N/2gin(0/2) '@ TN/2cos(0/2)
Thez—qult CNOT gate CNOT = 000 1 with all S|ng|e
0010

= A universal set of gates

u(h) B v ()
0

(1) r=5=( )

29 © 2017 IBM Corporation



Quantum math in a single slide

Probability Theory: Quantum Theory:
t11 ... ty1on D1 q1 Ui .. Up2n aq b1
ton1 ... Tonon Pon gan Uon1 ... Ugnogn Qgn Bon

on on
p2>0 Zpi:l 047;60 Z]aiP:l
i=1 i=1

Linear transformations that conserve 1-norm of probability Linear transformations that conserve 2-norm of amplitude
vectors: Stochastic matrices vectors: Unitary matrices
There exists efficient ways to simulate this exponential There does not exist efficient ways to simulate this

exponential (negative sign)

It is like “Probability theory with Minus Signs”



A Quantum Algorithm

The spread

First part of the algorithm
IS make a equal
superposition of all 2"
states. Apply H gates

The problem

The second partis to
encode the problem into
this states (phases on the
on the all 2" states.

The magic

The magic of quantum
algorithms is to interfere all
these states back to a few

outcomes containing the
solution



Quantum speedups

...Quantum computers are the only novel hardware which changes the
game

NP
Hard Problems

Quantum Easy P
Easy Problems

(Polynomial)

Simulating Quantum Mechanics What else is in here?




Types of quantum computing

Universal fault-tolerant quantum computer

The holy grail of quantum information science. Allows one to run useful quantum algorithms which achieve
exponential speed ups over their classical counterparts. However the over head of quantum error correction
estimates 1M-5M qubits

Approximate quantum computer

A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K
qubits

Analog / quantum Annealing

A special built system which uses quantum effects to solve/emulate a specific problem. It has limited
programmability and unclear if and when it has a speed up over conventional computers.



Types of quantum computing

Approximate quantum computer

A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K
qubits



Toward a Quantum Approximate computer

Universal
— fault-tolerant
2 QC (distant
% 1,000,000 future)
o
o
®)
©
E
c 1,000
=
(h)
©
E
O
= .
1 1,000 1,000,000

Circuit width (# of qubits)



Technical goals for QISKIit software platform

» Plan for continued improvement of quantum devices
—Increasing size, capability, and fidelity

» Build software tools for working with these near-term quantum computing systems
— Short-depth circuits: enable investigation of algorithms toward quantum advantage
— Pre-fault-tolerance: enable exploration of broad error mitigation techniques

» Create a framework for experiments, simulations, and analysis
— Backend-independent interface for running experiments
— Multiple simulators and analysis tools
— Circuit rewriting infrastructure
= Optimization, scheduling, hardware mapping

* Increase capabilities and add features over time
— Expose lower level control interfaces and extend mapping framework
= Access to timing and pulse shape
— Introduce higher level abstractions



IBM Quantum Experience



Anatomy of a superconducting qubit device

Qubits:
Single-junction transmon
Frequency ~ 5 GHz
Anharmonicity ~ 0.3 GHz

Resonators:
Co-planar waveguide
Frequency ~ 6 — 7 GHz
Roles:
Individual qubit readout
Qubit coupling (*bus™)

Corcoles et al., Nat. Commun. 6, 6979 (2015)



= . o ' 100 nm

i e P

" FIXED-FREQUENCY SUPERC(

JOSEPSON JUNCTION QUBIT

= Anharmonic oscillator (“transmon*” qubit) with ~ 5% @nharmonicity

= Using two lowest energy eigenstates"l__i"a qubit

A i
. - b '{:

*Transmon pioneered by Schoelkopf group, from Yale ":_:_{::-._:_i_versity. Koch et. al. A 76, 04319 (2007)

B

Bl o



COULPING QUBITS BY BUS RESONATOR

s = (% (% (% ® % ® (% o
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» Bus frequency detuned from qubit
frequencies. [fo it — fousl >> 0

* Two-qubit exchange interaction J via
virtual photons is mediated by the bus
resonator.




Properties of current devices:

Single-junction transmon qubits
T,~T,~50pus

1Q gate fidelities > 99%

2Q gate fidelities > 95%
Measurement fidelities > 93%

Nearest-neighbor couplings

Current device offerings:

5-qubit device (“ibmgx4”): access via web GUI and QISKit API
16-qubit device (“ibmgx5”): access via QISKit API only
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Circuit building blocks: single-qubit basis gates

Goals: achieve universal qubit control, maximize fidelity, minimize need for calibrations
Arbitrary rotation on the Bloch sphere = up to 3 successive rotations around fixed axes:

Good news: arbitrary R, can be done instantaneously and exactly

Just adjust phase of carrier to change reference frame

Bad news: can't calibrate R () to high fidelity for arbitrary

Solution: re-write arbitrary gates to use N frame changes plus
N - 1 well-calibrated gates with fixed axis and angle (N =1, 2, or 3)

v

FC = frame change
GD = Gaussian w/ DRAG

X—n/ 2

. FC _ GD _ FC _

{-a) {2 ) (-ch}



Circuit building blocks: two-qubit basis gate

In conjunction with the single-qubit gates, need just a single

entangling gate for universal control (ideally well-calibrated) /\ /\
Due to physics of the cross resonance effect, optimal direction of
CNOT (i.e. which qubit is control vs. target) depends on @
frequency and anharmonicity of the qubits involved
Implement CNOT in only one direction for each qubit pair ’ \
Include directionality in coupling map given to user @

In practice, cross-resonance tone is split in half, with a refocusing

pulse in the middle to cancel slow fluctuations CNOT gates on a 5-qubit

chip Arrows go from
control to target

_ FC GD | GD |
Control: wec = g “mew2) T (o) )

Target: wr




> Backend: QS1_1 (20 Qubits)

v Backend: ibmgx5 (16 Qubits)

g @ — @) —@) Q0 Q1 Q2 Q3 Q4 Q5 Q6

E Frequency (GHz) 526 540 528 508 498 515 531
2 (@) (@) —(ex2) (@) T1 (us) 45.00 38.30 48.40 4820 41.70 3530 43.10
B T2 (us) 36.40 50.20 60.30 8290 9810 41.60 68.20

Date Calibration: 2018-01-08 07:30:27 Gate error (1073) 1.82 364 371 208 1.42 206 1.62

Fridge Temperature: 0.0136409 K Readout error (1072) 5,86 721 4.03 514 7.51 5.07 5.09
. CX1.0 CX2.3 CX3_4 CX5_4 CX6_5

Mors detalls MultiQubit gate error (10~2) 418 396 376 374 3.74
CX1_2 CX3_14 CX6_7

419 3.34 3.23

CX6_11
6.10

> Backend: ibmqx4 (5 Qubits)

> Backend: ibmgx2 (5 Qubits)

v Backend: ibmgx_gasm_simulator

Number of qubits 20
Conditionals (if) Yes
v Backend: ibmgx_hpc_gasm_simulator -
Number of qubits 32
Conditionals (if) No

https://quantumexperience.ng.bluemix.net/gx/devices



Additional backend information

Input Output
, .
[
o !
I Quantum !
Gireulat o i X limited |
irculator \\_/’ 'u 5062 Amplifier 1
| (Twpa) !
m Hybnd :

Isolator

Two qubits are multiplexed on the output.

>|BM QX3

https://github.com/QISKit/ibmqx-backend-information

This document contains information about the IBM Quantum Experience ibmgx3 backend.

Contributors (alphabetical)

Baleegh Abdo, Vivekananda Adiga, Lev Bishop, Markus Brink, Nicholas Bronn, Jerry Chow, Antonio Corcoles, Andrew
Cross, Jay M. Gambetta, Jose Chavez-Garcia, Jared Hertzberg, Oblesh Jinka, George Keefe, David McKay, Salvatore
Olivadese, Jason Orcutt, Hanhee Paik, Jack Rohrs, Sami Rosenblatt, Jim Rozen, Martin Sandberg, Dongbing Shao,

Sarah Sheldon, Firat Solgun, Maika Takita

Status History

This device went online June 2017.

_ FC

Wa “h
- F&

Wa 0
- F&

Wq N
Control: wc
CR: wr
Target: wr

. GD _ FC
m2n/2) (-4

GD BEGE D G
{n/2,0) 1-8) (mf2,m) (~ch)
_IFc @D 1 1 GD 1 !
(m/2) (m-m/2) 1 1 (m.0) 1 1
1 I I 1
GD
(2,0 T T T T

Crosstalk, which we parameterize by §j = (Ej,; - Ej - Ej + Eg)/ht is measured using a Joint Amplification of ZZ (JAZZ)
experiment, which is a modified Bllinear Rotational Decoupling (BIRD) [*fn1]. The standard BIRD sequence used in
nuclear magnetic resonance (NMR) is a Ramsey experiment on one qubit with echo pulses on both the measured
qubit (G} and the coupled gubit (Q)). In the JAZZ experiment, this sequence is performed twice, for each initial state
of the coupled qubit. Additionally, the phase of the final nj2-rotation is varied in order to detect an oscillating signal.
& is equal to the frequency difference found betwean the two experiments. The JAZZ experiment is shown in the
figure below, and the measurements of all  are in the following table. The GD pulse notation is defined below in the
Gate Specification section.

[*fn1]: J.R. Garbow, D.P. Weitekamp, A. Pines, Bilinear rotation decoupling of hemenuclear scalar interactions,
Chemical Physics Letters, Volume 93, |ssue 5, 1982, Pages 504-509.

w— GD t GD t GD
™ 2o im0 28

0.1
wi ! Go
11 wa 1 o

In the crosstalk matrix, the error bar is less than 1 kHz for all §; and a dash indicates an interaction strength for that
pair < 5 kHz.

S Qo o1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QW Oon @12 A3 Q14

(kHz)

Qo -46 - - - - - - - - - - - -

a1 -48 0| - - - - - - . - 5 - -

Q2 - 74 a1 - - . = 5 - . - . -

Qs |- = -98 i S - = = 2 . < = = -57



Much more than superconducting qubits on the cloud!

IBM Q > Experience Community of over 60’000 users Home Composer Devices Community GitHub  Jay Gambetta

Q Forum w~_| News [»] Videos I% Papers @ Awards

@ Post to forum aarch for.. All Categories  ~ auick links

FAQ

[TT] Beginner's Guide

General

1 one question about Rx, Rz, and Ry gate in ibmqx

comments

TJ Full User Guide

Hi everyone.Iln qelibl.inc, I found that Rx,Ry,Rz are implemented by U3, U2 and U1 gate. Rx(theta) = U3(theta,-
pi/2,pi/2)Ry(theta) = U3 (theta,0,0)Rz(theta) = U1(...

/]

New experiment [ J New [ Save (] saveas ibmgx2 Rur I Simulate
Over a million
H Gates Properties DASHM

experiments... from all

afo] i _ﬁ P e o A Qubit in the Making Go Behind-the-Scenes of a Quantum A Benchmarking Metric for a
. b § e S even con tl nen tS | GATES Uy . Experiment Quantum Computer: the Quantum
qff] i _-ﬁ"rlqle._._-c. = ) qubit. R S Volume
w | LA ' ining how the IBM Q
| @ jaygambetts [EREl
£ :

e &2 Y
al3] i B 2

Py N

A Mechanical Qubit The gubit Quantum Gates



OpenQASM



OpenQASM (Quantum Assembly Language)

include "gelibl.inc";
qreg q[3];

creg ¢[5];

x q[0];

X q[2];

cex q[0],q9[2],9[3];
measure q[3] -> c[0];
if(c==1) x q[3];

1
2
3
4
5
6
7
8
9

=
o

X 1mport gASM % Dowload QASM
Express data dependency but not explicit
timing of instructions; separation of
guantum and classical processing;

hardware agnostic

https://arxiv.org/abs/1707.03429
https://github.com/QISKIit/opengasm

Open to discussions about
extensions and modifications!



https://arxiv.org/abs/1707.03429
https://github.com/QISKit/openqasm

OpenQASM features

» Define quantum and classical registers: greg qr[8]; creg cr[8];

= Apply built-in unitary operations U and CX: U(p1/2,0,p1) qgr[0]; CX
qriO].qr[1];

» Define additional gates as subroutines using combinations of U and CX:

gate swap a,b { //swap the quantum states of qubits a and b
CX a,b;
CX b,a;
CX a,b;

ks

* Include subroutines defined in other files: 1nclude “gelibl.iInc”

» Perform register-level operations: h gr; CX qra,qgrb;

» Measure qubits: measure qr[0] -> cr[O0];

» Use barriers to limit compiler optimizations: x qr[0]; barrier gr[0]; X
qrO];

» Apply classically conditioned operations: 1¥ (cr[0]==1) { x qgr[1]; }




QISKIT API



QISKit API: an interface to quantum hardware

»Submit requests for processing by guantum
hardware - |
— Name of quantum backend to use ngh_level controller
— Quantum circuit(s) to run, in QASM format '

— # of trials (“shots”) to run 3 // ) \ / i / i
=Retrieve results and metadata for client-side / / /
processing i online 16Q 50

— Probability of each outcome . sims controller controller

— Execution time and duration
— Most recent calibration data at time of execution

=Get backend detalls

— Static properties: device type, qubit coupling map, basis gates, description/comments
— Dynamic properties: coherence times, operation fidelities, time of last calibration

— Status: availability, length of job queue

»Token-based authentication, tracking of
“credits”

o
=
=
=
Iy




QISKit API: connecting to the IBM Q Experience

» Connect the QISKit API (see github.com/QISKit/giskit-api-py) to the IBM Q Experience
In [1]: import Qconfig

In [2]: from IBMQuantumExperience.IBMQuantumExperience import IBMQuantumExperience

In [3]: api = IBMQuantumExperience(Qconfig.APItoken,Qcontig.contig)
» Get a list of IBM Q Experience backends currently online
In [4]: backends = api.available backends()

In [5]: [backend[ 'name’'] for backend in backends if
...: apl.backend status(backend[ ‘name’])[ "available’'] is True]
Out[5]: ["ibmgx4', "ibmgx5', 'ibmgx_gasm_simulator']
» Get details about a given backend
In [6]: backends[ "name '=="ibmgx4d']

Out[6]: =
{'basisGates': 'SU2+CNOT', » -
‘chipName': 'Raven’, i’///fw
‘couplingMap’: [[1, @], [2, @], [2, 1], [2, 4], [3, 2], [3, 4]],

‘description’: '5 gqubit transmon bowtie chip 37,

"id": "cl16c5ddebbf8922a7e2a0t5a89cacd78",
‘nQubits’: 5, ...



. . In [7]: Bell QASM = input()
QISKit APIl: making a Bell state
o _ _ ...: OPENQASM 2.@;
=»Submit job with QASM for making Bel e 1nc1ud-E5']'qe11b1-1nc";
...t greg q[5];
In [8]: api.run_job([{'gasm': Bell QASM}], backend = "ibmgx4', shots = 100@| ...: creg c[5];
Out[8]: .--1 h gq[1];
{'backend’: {"id': "cl6c5ddebbf8922a7e2a@f5a89cac478", "name’': "ibmqgx4'}, .--1 ex g[1],q[@];
'creationDate’: '2017-11-26T05:23:54.746Z", ---: measure g[@] -> c[0];
‘deleted': False, ---: measure q[1] -> c[1];

‘1d": | "ebdaee522b43bl171deel@5262adbcc2e |
"infoQueue’: {'status': \EXECUTING'},

*Check job status

In [9]: api.get _job('ebdaee522b43bl71deeld5262adbcc2e’ )| "status’]
OQut[9]: "COMPLETED'

=sRetrieve results

In [1@]: api.get job('ebdaee522b43bl71deelBd5262adbcc2e’ )| "gasms ' ][@][ 'data’][ "counts']
Out[1e]: {'0PPPA': 500, '0EEO1': 26, '00010': 64, '00011': 410}

- As expected, 00 and 11 appear with similar probabilities
and 01 and 10 are suppressed



That’s great, but...

*What if
*\What If
*\What If
*What If

=\What If
data?

want to work with many qubits?

want to optimize my program to maximize fidelity?

want to assemble complex circuits from simple ones?
want to use a high level language to construct my circuits?
want to avoid certain qubits based on device calibration

*\What if | want to run the same circuit on completely different
guantum hardware?

="\What if

ceen 2



QISKIT SDK



Quantum
Information
Software Kit

Table Of Contents

Installation and setup
Cetting started

QISKit overview
Developer documentation
SDK reference

Installation and setup

This Page

Show Source

QISKit Documentation

Quantum Information Software Kit (QISKit), SDK Python version for working with OpenQASM and the IBM Q experience (QX).

Table of Contents

o Installation

o Install Jupyter-based tutorials

o FAQ
¢ Cetting started

o Quantum Chips

o Project Organization
o QISKit overview

o Philosophy

o Project Overview

o Programming interface

i) QISKit / giskit-sdk-py | =~

<> Code ) Issues 15

1] Pull requests 8

|1] Boards |8« Reports

® Watch

'l Projects 0

151

EEI Wiki

Python software development kit for writing guantum computing experiments, programs, and applications.
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QISKit SDK

» Goal: enable research and further
development of applications for near-term
guantum backends

=Central components:

— Quantum Program class (see illustration)
— Quantum circuit transcompiler
— Quantum circuit backends

-Typlcal workflow:

Initialize quantum program

Define quantum and classical registers
Build quantum circuits

Rewrite circuits to run on target backend
Execute job

Analyze results
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QISKIit: Getting started

Download qiskit-tutorial from https://github.com/QISKit/giskit-tutorial
Install giskit (optionally download SDK from https://github.com/QISKit/giskit-sdk-py)
Navigate to qiskit-tutorial folder and launch Jupyter notebook

® 1. cjwood@christophers-MacBook-Pro: ~/Documents/IBM-Git/qgiskit-tutorial

- qiskit-tutorial git:(master) X pip install qgiskit; jupyter notebookl]

Create a new Python 3 notebook and import qiskit

In [1]: # Import QISKit
import giskit
from giskit import QuantumProgram # basic QISKit object

# Add IBMQOX API token and URL. Needed for online access
API TOKEN = "your quantum experlience apl token here"
API URL = 'https://quantumexperience.ng.bluemix.net/api’



https://github.com/QISKit/qiskit-tutoria
https://github.com/QISKit/qiskit-sdk-py)

Initializing a quantum program

The main interface to QISKit is the QuantumProgram class.

» Collection of quantum circuits and methods to interact with them
 Build and store quantum circuits

* Import or export OpenQASM text circuits
* Interface with backends to run experiments (on real hardware or simulators)

Basic steps to initialize a new program

1. Create a new QuantumProgram
2. Add 1 or more quantum registers
3. Add 1 or more classical registers

In [2]: # Initialize a new guantum program
gp = QuantumProgram( )

# Add a 2-qubit guantum register "gr"

gr = gp.create quantum register("gr", 2)

# Add a 2-bit register "cr" to record results
cr = gp.create classical register("cr", 2)



Bell state with QISKIit: building a basic circuit

Create quantum program and
associated registers -

Define a circuit to prepare a
Bell state

_ 00 +[11) _|

) 3

\

Define a circuit to measure
both qubits in the default (2)
basis

In

In

In

In

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:
[7]:
[8]:
[9]:

from giskit import QuantumProgram

QuantumProgram()

ap

gp.create_guantum_register('aqr’,2)

qr
cr = gp.create classical register('cr’,2)

bell = gp.create circuit( 'Bell’,[ar],[cr])

giskit.extensions.standard
bell.h(qr[@]) defines methods for common
operations (similar to gelibl.inc).
bell.cx(gr[@],qr[1]) |[Need others? Add an extension!

meas_z = gp.create circuit( 'measZ’,[qr],[cr])

meas_z.measure(qr,cr)



What's in the standard extension?

Available circuit operation methods: Gates  Properties  QASM

. . GATES i@} @ Advanced
 Single qubit gates Sk orevarions
e iden, x,y, z, h, s, sdg, t, tdg, ul, u2, u3, rx, ry, rz I
 Two qubit gates (cx, cy, cz, cul, cu2)

* Three qubit gates (ccx, cswap)

 Measurement, reset, and barrier (measure, reset, barrier)
Additional circuit construction methods:

* |nvert gates with .inverse
— mycirc.ul(pi/8).inverse()

= Add a classical control with .c_if
— mycirc.x(q[0]).c_if(outcome,1)



Bell state with QISKit: getting some information

gum—
In [B]: gp.get circuit names()
Out[B]: dict keys(['Bell', 'measZ'])
Get quantum circuit and _
In [9]: gp.get_quantum register_ names()

program register names
Out[9]: dict _keys(['qgr'])

In [10]: gp.get classical register names| )

=  Qut[10]: dict keys(['cr'])
gm—

In [11]: for gasm in gp.get_gasms(gp.get_circuit names()):
print(gasm)

OPENQASM 2.0;
include "gelibl.inc";
greg gr[2];
Get OpenQASM text for the creg cr[2];

- - — h gr[0];
quantum circulits % GETO T aE T

OPENQASM 2.0;

include "gelibl.inc";
greg qr[2];

creqg cr[2];

measure qr[0] -> cr[0];
— measure gr[l] -> cr[l];




Bell state with QISKIit: harnessing circuit modularity

*For more evidence the qubits are actually entangled, measure in a
different basis and verify that the correlation persists

*Make a circuit for measuring in the X basis:
In [1@]: meas x = gp.create _circult( 'measX',[gr],[cr])
In [11]: meas x.h(gr)

In [12]: meas_x.measure(qr,cr)

*Now add two new circuits to our Quantum Program, each made by
combining the Bell state preparation circuit with one of the

measurement circuits:

In [13]: gp.add circuit( 'Bell measZ',bell + meas_z)

In [14]: gp.add circuit( 'Bell measX',bell + meas_ x)



Bell state with QISKIit: inquiring about backends

In [12]: gp.available backends()

Request baCke_nd names from - Out[12]: ['local gasm cpp simulator', 'local gasm simulator', 'l
the program object ocal unitary simulator']

In [14]: gp.set api(Qconfig.APItoken, Qconfig.config["url"])
gp.available backends()

Out[l4]: ['ibmgx4',
"ibmgx5',
Configure the API to access the SRS . ,

_ i1bmgx gasm simulator’,
online backends = 'local:qasm_cpp_simulator' ’
'local gasm simulator’,
'"local unitary simulator']

In [15]: gp.online backends()

Out[15]: ['ibmgx4', 'ibmgx5', 'ibmgx2', 'ibmgx gasm simulator']



Bell state with QISKit: execution

» Send both circuits to the IBM Q Experience’s 5-qubit chip for execution:
In [15]: qp.set_api(API_TOKEN, "https://quantumexperience.ng.bluemix.net/api’)

In [16]: cmap = gp.get backend configuration( ibmgx4d")}[ "coupling map’]
In [17]: result = gp.execute([ 'Bell measZ’, "'Bell measX'], backend="ibmgx4d’,
: coupling map=cmap, shots=1808)
= ... and in a couple minutes:

In [18]: result.get counts( 'Bell measi’)
Qut[18]: {'00000": 498, '@eeel1': 32, '00010': 65, 'ee01l1': 413}

In [19]: result.get counts( 'Bell measX')
Out[19]: {'eeee0"': 501, '@0Ee1': 45, '@80168': 56, '00011': 398}

* Indeed, outcomes are correlated regardless of the choice of measurement basis
©



Bell state with QISKIt: circuit rewriting

=Q: But how did these circuits even run at all?!
From qiskit.extensions.standard.cx:

def ex(self, ctl, tet):
"""Apply CNOT from ctl to tgt."™™"

Wrong direction! T\
M

In [7]: bell.cx(qr[0],qr[1])

* A: Execute = compile + run

In [2@]: print(gp.get_gasm('Bell meas’’)) In [21]: print(result.get_ran_gasm( 'Bell meas7"))
OPENQASM 2.0; o OPENQASM 2.8; .
include "gelibl.inc"; Original QASM include "gelibl.inc*; Rewritten QASM
qreg qr[2]; qreg q[2];
creg cr[2]; Rewrite gates in backend’s basis creg cr[2];
l; qrla]; | Re-map circuit given coupling map [y2(@.@,3.141592653589793) q[1];
x qr[8],qr[1];] cx all1],af[@];:
measure qr{@] -> cr[0]; measure g[@] -»> cr[1];
measure gr[l1l] -> cr[1]; measure q[1] -> cr[@];

» Transcompiler goals:

— Map a given circuit into one that can be run on target backend
— Optimize circuit performance by eliminating redundancies in instruction sequences



Nuts and bolts: basic circuit rewriting

*The circuit rewriting methods (mapper module) execute a few simple
fixed passes

— 1. “unroll”: expands gate definitions to some level, expands loops

— 2. “swap_mapper”: selects a layout and inserts SWAP gates as needed
— 3. “cx_cancellation”: removes even runs of CNOT gates

— 4. “optimize_1q_gates”: simplifies runs of single qubit gates

»SWAP Insertion algorithm solves using a randomized, greedy layer-
by-layer approach

»Single qubit gate optimization attempts to minimize number of pulses

*Modular framework in development to enable extensibility and
research



Bell state with QISKit: local Python simulators

Often we would like to examine the expected quantum state
e Using the simulator in QISKit we may “cheat” and ask directly for the state
Run these examples on circuits that don’t contain measurement

In [18]:

In [19]:

results = gp.execute('Bell’', backend='local gasm simulator', shots=1)
data = results.get data('Bell’)
print(data)

{'counts': {'00': 1}, 'quantum state': array([ 0.70710678+0.3, 0.00000000+4+0.3,
classical state': (0,)}

results = gp.execute('Bell’', backend='local unitary simulator', shots=1)
data = results.get data('Bell')
print(data)

{'unitary': array([[ 0.70710678 +0.00000000e+00j, 0.70710678 -8.65956056e-177,
.00000000 +0.00000000e+00j, 0.00000000 +0.00000000e+0073],

.00000000 +0.00000000e+00j, 0.00000000 +0.00000000e+007,

.70710678 +0.00000000e+00j, -0.70710678 +8.65956056e-1731,

.00000000 +0.00000000e+00j, 0.00000000 +0.00000000e+007,

.70710678 +0.00000000e+00j, 0.70710678 -8.65956056e-1731],

.70710678 +0.00000000e+00j, -0.70710678 +8.65956056e-177,

.00000000 +0.00000000e+003j, 0.00000000 +0.00000000e+003]1)}

[

[

oo oc oo o

0.00000000+0.3,

0.70710678+0.31),



Bell state with QISKIit: plotting states

Plotting a state using the visualization module:
e The giskit.tools.visualization model contains several methods of visualizing

gquantum states:

# Import QISKit wvisualization library
from giskit.tools.visualization import plot state

from giskit.tools.gi.qgi import outer

In [10]:

# Plot the density matrix of the state
rho = outer(data[ 'quantum state']) # convert to density matrix

plot state(rho, method='city'j
-

Real[rho]




Example of advanced QISKit features

* To fully determine a 2-qubit state experimentally, we need to obtain
counts from 9 different measurement circuits corresponding to the
Pauli group elements, I.e. we need to do quantum state
tomography.

Is there an easier way to implement this?

* Yes! We have the full power of Python, so write functions that
automate necessary steps

 Many useful routines are already implemented in QISKit modules,
and more are coming!



Bell state with QISKit: state tomography

« We can implement quantum state tomography using the QISKit
tomography module:

In [15]: import giskit.tools.gcvv.tomography as tomd

* This automates generating of measurement circuits, and
reconstructing the density matrix:

e Generate measurement circuits:

In [17]: meas qubits = [0,1]
tomo circs = tomo.build state tomography circuits(gp, 'bell’,
meas qubits, gr, cr)

print tomn_circs1

>> created state tomography circuits for "bell”

[ 'bell measX0X1', 'bell measX0¥1l', 'bell measX0Z1', 'bell measY0X1l', 'bel
1l measY0Y1l', 'bell measY0Z1l', 'bell measZ(0X1l', 'bell measZ0Yl', 'bell mea
sZ0Z1']



Bell state with QISKit: state tomography

e Execute the circuits on a simulator to obtain count results:

In [19]: backend = 'local_gasm _simulator’
shots = 1024
tomo res = gp.execute(tomo circs, backend=backend, shots=shots)

for ¢ in tomo circs:
print(tomo res.get counts(c))

{'"11': 532, '00': 492}
{'01': 243, "11': 255, '00': 263, '10': 263}
{'11': 256, '00': 234, '10': 261, '01': 273}
{'01': 268, '00': 260, '10': 258, '11': 238}
{'10': 519, '01': 505}
{° 11"z 267, "00° s 274; "10°:z 251; "01%': 232}
{00 =z 256; "Il 259; "01": 247; "10": 262}
{'10"': 252, '01': 249, '00': 259, "l1l1': 264}
{'11': 494, '00': 530}



Bell state with QISKit: state tomography

 Post-process data to reconstruct state

In [20]: | # extract state tomography data
tomo data = tomo.state tomography data(tomo res, 'bell’', meas qubits)

# Fit the state using Maximum Likelihood estimation

rho fit = tomo.fit tomography data(tomo data)

# Plot the state
plot_state(rho fit, method='city')

Real[ rho]
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VQE algorithm: Application to quantum chemistry

The latest version of this notebook is available on https://github.com/QISKit/giskit-tutorial.

For some physical Hamiltonian H, find the smallest eigenvalue E¢ , such that H|yg) = Eglyg), where |¥¢) is the eigenvector
corresponding to Eg.

© 2017 IBM Corporation
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Approximate universal quantum computing for quantum chemisty problems S

In order to find the optimal parameters @ , we set up a closed optimization loop with a quantum computer, based on some
stochastic optimization routine. Our choice for the variational ansatz is a deformation of the one used for the optimization of
classical combinatorial problems, with the inclusion of Z rotation together with the Y ones. The optimization algorithm for fermionic
Hamiltonians is similar to the one for combinatorial problems, and can be summarized as follows:

1. Map the fermionic Hamiltonian H to a qubit Hamiltonian Hp .

2. Choose the maximum depth of the quantum circuit (this could be done adaptively).

3. Choose a set of controls @ and make a trial function [y(8)). The difference with the combinatorial problems is the insertion of
additional parametrized Z single-qubit rotations.

4. Evaluate the energy E(@) = (y(0) |Hp| w(6)) by sampling each Pauli term individually, or sets of Pauli terms that can be
measured in the same tensor product basis.

5. Use a classical optimizer to choose a new set of controls.

6. Continue until the energy has converged, hopefully close to the real solution 8* and return the last value of E(0).

Note that, as opposed to the classical case, in the case of a quantum chemistry Hamiltonian one has to sample over non-
computational states that are superpositions, and therefore take advantage of using a quantum computer in the sampling part of the
algorithm. Motivated by the quantum nature of the answer, we also define a variational trial ansatz in this way:

| W(a)) = [Usinglc (0) Ucntanglcr] ml +)

where Uepiangler is a collection of cPhase gates (fully entangling gates), Usingle (@) = H?:l Y(0,)Z(0,,;) are single-qubit Y and Z
rotation, n is the number of qubits and m is the depth of the quantum circuit.

References and additional details:

[1] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient Variational
Quantum Eigensolver for Small Molecules and Quantum Magnets, Nature 549, 242 (2017), and references therein. soration



Energy

77

i

E(theta_plus)
E(theta_minus)
Final Energy
Exact Energy

Trial state

0.2 1

0.0 1

Energy

- Exact

~—— Optimized

T

05

T

10

15 20 25 30 35

Atomic distance (Angstrom)

T

40



Experimental Results (2 qubits): Hydrogen Molecule

H,: 1st  Hg: 1st
4 spin orbitals mapped to 2 qubits

Equilibrium d = 0.735 A
H = (-1.05237)I1+(0.39735)Z1+(0.39735)1Z+
(0.11279)ZZ+(0.18093)XX

Dissociationd = 4 A
H = (-0.70461)I11+(0.00012)Z1+(0.00012)1Z+
(1.6673e-10)ZZ+(0.33438)XX

Exact -1.858
1Ug; -1.8365

arXiv:1704.05018




Toolboxes and tutorials

(part of SDK): libraries of helper

functions for...

— Quantum state visualization and analysis
— Optimization problems

— Quantum chemistry problems

— Verification and validation

— File I/O

(github.com/QISKit/giskit-

tutorial): Jupyter notebooks illustrating
concepts, usage, applications, etc.

— Currently 24 notebooks spanning 5 categories:

1.

a s wnN

Introduction to the tools

Exploring quantum information concepts
Verification tools for quantum information science
Applications of short-depth quantum circuits

Quantum games

import giskit.tools.gcvv.tomography as tomd

i
_B -
L
i = e TI 00 =
- g #. 1 -

e = | -0.5

#;xfﬁff -10

e #;#Fﬁff' 1 42
—— o
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In [6]: plt.plot(mel distance,electr energy+coulomb repulsia
if run optimization:
plt.plot(mol distance,electr_energy optimized+ca
plt.xlabel('Atomic distance (Angstrom)')
plt.ylabel( 'Energy’)
plt.legend()

out[6]: <matplotlib.legend.lLegend at @x1112bfc58>

0.2
| — Exact

00 Optimized

-1.0 ' =

05 10 15 20 25 30 35 40
Atomic distance (Angstrom)
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Interface for experiments or simulations to enable research and applications pre-fault-tolerance

Growing software stack, including higher-level tutorials and examples

Interface to quantum devices: IBM QX and local devices

Open source development

- New releases every few months

- Ongoing projects to improve circuit rewriting architecture, simulators, visualizers, backend interfaces

explore
contribute

help define


https://www.qiskit.org/
https://github.com/QISKit
https://qiskit.slack.com/
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