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• Quantum software and architectures 

Exploring Quantum Possibilities 

Quantum hardware is evolving 
rapidly, with many approaches 
being pursued 
Even individual qubits exhibit day-
to-day performance variability 
 
 
 

http://vandersypenlab.tudelft  

http://www.quantumoptics.at 

http://topocondmat.org/ 
w2_majorana/braiding.html 

??? 
IBM 
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• Quantum software and architectures 

Exploring Quantum Possibilities 

QISKit goal is to provide an 
open-source platform for 
building quantum programs that 
can keep up with changing 
hardware 

http://vandersypenlab.tudelft  

http://www.quantumoptics.at 

http://topocondmat.org/ 
w2_majorana/braiding.html 

QISKit 
IBM 
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• Quantum Information Software Kit.  
•   
• Is an open source software development kit for writing 

quantum computing experiments, programs, and 
applications.  
 

QISKit 
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• Why is quantum computing exciting? 
 Why Now? 
 To solve problems that are intractable for classical computers 
 Fault-tolerant vs approximate quantum computing 

 

• What does QC look like today? 
 IBM Q superconducting hardware 

 

• QISKit 

Overview 
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Moore’s Law 
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Moore’s Law 

Quantum computing is a new 
model of computation 
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Exponential scaling 

There's a famous legend outlined in “IBM Mathematics Peep Show” 

The inventor of chess showed it to the emperor of India, and the emperor was so impressed 
he said "Name your reward!"  
The man responded. "Oh emperor, my wishes 
are simple. I only wish for this. For the next 64 
days I will come back and for the first day please 
only give me one grain of rice for the first square 
of the chessboard, on the second day two grains 
for the next square, four for the next, eight for the 
next and so on for all 64 squares, with each 
square having double the number of grains as 
the square before." 
 
The emperor agreed, amazed that the man had 
asked for such a small reward - or so he thought. 
.. 

https://www.youtube.com/watch?v=t3d0Y-JpRRg


On the first day… 

Photo: thepowerofimpossibility.com 



After one week…127 grains of rice 

Photo: wikimedia 



After one month… 1,070,000,000 grains of rice 



After 64 days … 535 billion metric tons of rice 



There are many intractable problems where the best known algorithm has 
runtime that scales exponentially with input size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 

Hard Problems (exponential) 

Linear  
programming 

P 
“Easy” Problems 

(Polynomial) 

NP  
“Hard” problems (exponential) 

Linear Programming 

  

19 

Limitations of conventional computers  
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A new model of computation 
 

Quantum Applications is about working out how to use these two 
principles in a new model of computation   

a physical system in a perfectly definite state can still behave randomly 
 
two systems that are too far apart to influence each other can nevertheless behave in ways 
that, though individually random, are somehow strongly correlated. 



Superposition 

Runs 1024 

The outcomes appear to be random 



Superposition 



Superposition 

Runs 1024 

Doing it twice makes it certain again. Can not be a classical random mixture 



Entanglement  



Entanglement  

Runs 4096 

qubit 1 it has no information about the quantum state. It is not superposition or a 
computational state. 



Entanglement  

Correlated in the computational basis  

Runs 4096 



Entanglement  

Exp 5. Preparing the qubit in the “00+11” state 

Correlated in the superposition basis  

Runs 4096 



Quantum Computing and Quantum Circuits I 
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Quantum Computing and Quantum Circuits II 

 A universal set of gates 

 
 
 
 

A quantum computation:  for all 

The 2 – qubit CNOT gate CNOT  with all single  



Quantum math in a single slide 

It is like “Probability theory with Minus Signs”   

Probability Theory: Quantum Theory: 

Linear transformations that conserve 2-norm of amplitude 
vectors: Unitary matrices 

Linear transformations that conserve 1-norm of probability 
vectors: Stochastic matrices 

There exists efficient ways to simulate this exponential  There does not exist efficient ways to simulate this 
exponential (negative sign) 
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A Quantum Algorithm  

The spread  The problem The magic 

First part of the algorithm 
is make a equal 

superposition of all 2n 
states. Apply H gates 

The second part is to 
encode the problem into 

this states (phases on the 
on the all 2n states. 

The magic of quantum 
algorithms is to interfere all 
these states back to a few 
outcomes containing the 

solution 
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Quantum speedups 

…Quantum computers are the only novel hardware which changes the 
game 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 

Problems (polynomial, P) 

Hard Problems (exponential) 

Linear  
programming 

           P 
Easy Problems 
  (Polynomial) 

NP  
Hard Problems 

Quantum Easy Factoring 

Simulating Quantum Mechanics What else is in here? 

32 
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Types of quantum computing 
 

Analog / quantum Annealing 
A special built system which uses quantum effects to solve/emulate a specific problem. It has limited 
programmability and unclear if and when it has a speed up over conventional computers.  

The holy grail of quantum information science. Allows one to run useful quantum algorithms which achieve 
exponential speed ups over their classical counterparts. However the over head of quantum error correction 
estimates 1M-5M qubits  

Universal fault-tolerant quantum computer  

Approximate quantum computer 
A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application 
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K 
qubits 
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Types of quantum computing 
 

Analog / quantum Annealing 
A special built system which uses quantum effects to solve/emulate a specific problem. It has limited 
programmability and unclear if and when it has a speed up over conventional computers.  

The holy grail of quantum information science. Allows one to run useful quantum algorithms which achieve 
exponential speed ups over their classical counterparts. However the over head of quantum error correction 
estimates 1M-5M qubits  

Universal fault-tolerant quantum computer  

Approximate quantum computer 
A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application 
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K 
qubits 
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• Quantum software and architectures 

Universal 
fault-tolerant 
QC (distant 

future) 

Simple “toy” 
demonstrations 

(present day) 

Toward a Quantum Approximate computer  

Circuit width (# of qubits) 

C
irc

ui
t d

ep
th

 (#
 o

f o
pe

ra
tio

ns
) 

                                  1,000                               1,000,000 

1,000,000 
 
 
 
 

1,000 
 
 
 
 

1 

Small circuits, 
can not predict 
(next several 

years) 

Goal: solve real problems with 
small quantum processors 
• Step 1: Build them 
• Step 2: Program them! 

Quantum advantage 
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Technical goals for QISKit software platform 

 Plan for continued improvement of quantum devices 
– Increasing size, capability, and fidelity 
 Build software tools for working with these near-term quantum computing systems 

– Short-depth circuits: enable investigation of algorithms toward quantum advantage 
– Pre-fault-tolerance: enable exploration of broad error mitigation techniques 
 Create a framework for experiments, simulations, and analysis 

– Backend-independent interface for running experiments 
– Multiple simulators and analysis tools 
– Circuit rewriting infrastructure 
 Optimization, scheduling, hardware mapping 

 Increase capabilities and add features over time 
– Expose lower level control interfaces and extend mapping framework 
 Access to timing and pulse shape 

– Introduce higher level abstractions 
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• Quantum software and architectures 

IBM Quantum Experience 
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Anatomy of a superconducting qubit device 

1 mm 

Qubits: 
  Single-junction transmon 
  Frequency ~ 5 GHz 
  Anharmonicity ~ 0.3 GHz 

Resonators: 
  Co-planar waveguide 
  Frequency ~ 6 – 7 GHz 
  Roles: 
    Individual qubit readout 
    Qubit coupling (“bus”) 

Corcoles et al., Nat. Commun. 6, 6979 (2015) 



 

 Anharmonic oscillator (“transmon*” qubit) with ~ 5% anharmonicity  
 Using two lowest energy eigenstates as a qubit 

*Transmon pioneered by Schoelkopf group, from Yale University. Koch et. al. PRA 76, 04319 (2007) 

100 nm 

FIXED-FREQUENCY SUPERCONDUCTING 
JOSEPSON JUNCTION QUBIT 

0.5 cm 
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Qubit 

Bus 

1 mm 

COULPING QUBITS BY BUS RESONATOR 

g1 g2 

  Bus frequency detuned from qubit 
frequencies. |fqubit – fbus| >> g 
  Two-qubit exchange interaction J via 

virtual photons is mediated by the bus 
resonator. 
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Devices used in the IBM Q Experience 

•Properties of current devices: 
– Single-junction transmon qubits 
– T1 ~ T2 ~ 50 µs 
– 1Q gate fidelities > 99% 
– 2Q gate fidelities > 95% 
– Measurement fidelities > 93% 
– Nearest-neighbor couplings 
 

•Current device offerings: 
– 5-qubit device (“ibmqx4”): access via web GUI and QISKit API 
– 16-qubit device (“ibmqx5”): access via QISKit API only 
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Circuit building blocks: single-qubit basis gates 

Goals: achieve universal qubit control, maximize fidelity, minimize need for calibrations 
 Arbitrary rotation on the Bloch sphere = up to 3 successive rotations around fixed axes: 

 
 
Good news: arbitrary Rz can be done instantaneously and exactly 

– Just adjust phase of carrier to change reference frame 

 Bad news: can’t calibrate Ry(θ) to high fidelity for arbitrary θ 
– Solution: re-write arbitrary gates to use N frame changes plus 

N - 1 well-calibrated gates with fixed axis and angle (N = 1, 2, or 3) 

 
 X 

Y 

Z 
|𝟎⟩ 

|𝟏⟩ 
|+⟩ 

|−⟩ 
|⟩ |⟩ 

FC = frame change 
GD = Gaussian w/ DRAG 

Yπ/2 

Xπ/2 X−π/2 
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Circuit building blocks: two-qubit basis gate 
 
 In conjunction with the single-qubit gates, need just a single 

entangling gate for universal control (ideally well-calibrated) 
 Due to physics of the cross resonance effect, optimal direction of 

CNOT (i.e. which qubit is control vs. target) depends on 
frequency and anharmonicity of the qubits involved 

–Implement CNOT in only one direction for each qubit pair 
–Include directionality in coupling map given to user 

 In practice, cross-resonance tone is split in half, with a refocusing 
pulse in the middle to cancel slow fluctuations CNOT gates on a 5-qubit 

chip Arrows go from 
control to target 
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Different Backends 

https://quantumexperience.ng.bluemix.net/qx/devices 



Additional backend information 

https://github.com/QISKit/ibmqx-backend-information 



Much more than superconducting qubits on the cloud! 

Over a million 
experiments… from all 
seven continents! 

Explanatory videos 

Community of over 60,000 users 
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• Quantum software and architectures OpenQASM 
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OpenQASM (Quantum Assembly Language) 

Open to discussions about 
extensions and modifications! 

https://arxiv.org/abs/1707.03429 
https://github.com/QISKit/openqasm 

Express data dependency but not explicit 
timing of instructions; separation of 
quantum and classical processing; 
hardware agnostic 

https://arxiv.org/abs/1707.03429
https://github.com/QISKit/openqasm
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OpenQASM features 

Define quantum and classical registers: qreg qr[8]; creg cr[8]; 
Apply built-in unitary operations U and CX: U(pi/2,0,pi) qr[0]; CX 
qr[0],qr[1]; 

Define additional gates as subroutines using combinations of U and CX: 
gate swap a,b {    //swap the quantum states of qubits a and b  
 CX a,b; 
 CX b,a; 
 CX a,b; 
} 

 Include subroutines defined in other files: include “qelib1.inc” 
Perform register-level operations: h qr; CX qra,qrb; 
Measure qubits: measure qr[0] -> cr[0]; 
Use barriers to limit compiler optimizations: x qr[0]; barrier qr[0]; x 
qr[0]; 
Apply classically conditioned operations: if (cr[0]==1) { x qr[1]; } 
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• Quantum software and architectures QISKIT API 



QISKit API: an interface to quantum hardware 

Submit requests for processing by quantum 
hardware 

– Name of quantum backend to use 
– Quantum circuit(s) to run, in QASM format 
– # of trials (“shots”) to run 

Retrieve results and metadata for client-side 
processing 

– Probability of each outcome 
– Execution time and duration 
– Most recent calibration data at time of execution 

Get backend details 
– Static properties: device type, qubit coupling map, basis gates, description/comments 
– Dynamic properties: coherence times, operation fidelities, time of last calibration 
– Status: availability, length of job queue 

Token-based authentication, tracking of 
“credits” 

5Q  
controller 

16Q 
controller 

High-level controller 

online 
sims 



Connect the QISKit API (see github.com/QISKit/qiskit-api-py) to the IBM Q Experience 
 

 
 
Get a list of IBM Q Experience backends currently online 

 
 

 
 
Get details about a given backend 

QISKit API: connecting to the IBM Q Experience 

... 



QISKit API: making a Bell state 

Submit job with QASM for making Bell state 
 
 
 

 
Check job status 
 
Retrieve results 
 

  As expected, 00 and 11 appear with similar probabilities 
     and 01 and 10 are suppressed 

... 



That’s great, but… 

What if I want to work with many qubits? 
What if I want to optimize my program to maximize fidelity? 
What if I want to assemble complex circuits from simple ones? 
What if I want to use a high level language to construct my circuits? 
What if I want to avoid certain qubits based on device calibration 
data? 
What if I want to run the same circuit on completely different 
quantum hardware? 
What if …. ? 
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• Quantum software and architectures QISKIT SDK 



Open development process 

Documentation from getting 
started to developing 



PYTHON 

SWIFT 

JAVASCRIPT 



QISKit SDK 

Goal: enable research and further 
development of applications for near-term 
quantum backends 
Central components: 

– Quantum Program class (see illustration) 
– Quantum circuit transcompiler 
– Quantum circuit backends 

Typical workflow: 
1. Initialize quantum program 
2. Define quantum and classical registers 
3. Build quantum circuits 
4. Rewrite circuits to run on target backend 
5. Execute job 
6. Analyze results 

Quantum Program 
Quantum and Classical Registers 

Backend Directory 

Execution Results 

Quantum Circuits 

State Counts 
00000 439 
00011 561 github.com/QISKit/qiskit-sdk-py 
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QISKit: Getting started 

 Download qiskit-tutorial from https://github.com/QISKit/qiskit-tutoriall 
• Install qiskit (optionally download SDK from https://github.com/QISKit/qiskit-sdk-py) 
• Navigate to qiskit-tutorial folder and launch Jupyter notebook 

 
 
 

• Create a new Python 3 notebook and import qiskit 

https://github.com/QISKit/qiskit-tutoria
https://github.com/QISKit/qiskit-sdk-py)


Initializing a quantum program 

The main interface to QISKit is the QuantumProgram class.  
• Collection of quantum circuits and methods to interact with them 
• Build and store quantum circuits 
• Import or export OpenQASM text circuits 
• Interface with backends to run experiments (on real hardware or simulators) 

Basic steps to initialize a new program 
1. Create a new QuantumProgram 
2. Add 1 or more quantum registers 
3. Add 1 or more classical registers 

 



Bell state with QISKit: building a basic circuit 

Create quantum program and 
associated registers 

Define a circuit to prepare a 
Bell state 

qiskit.extensions.standard 
defines methods for common 
operations (similar to qelib1.inc). 
Need others? Add an extension! 

Define a circuit to measure 
both qubits in the default (Z) 
basis 



What’s in the standard extension? 

Available circuit operation methods: 

• Single qubit gates  
• iden, x, y, z, h, s, sdg, t, tdg, u1, u2, u3, rx, ry, rz 

• Two qubit gates (cx, cy, cz, cu1, cu2) 

• Three qubit gates (ccx, cswap) 

• Measurement, reset, and barrier (measure, reset, barrier) 

Additional circuit construction methods: 

 Invert gates with .inverse 
– mycirc.u1(pi/8).inverse() 

 Add a classical control with .c_if 
– mycirc.x(q[0]).c_if(outcome,1) 



Bell state with QISKit: getting some information 

Get quantum circuit and 
program register names 

Get OpenQASM text for the 
quantum circuits 



Bell state with QISKit: harnessing circuit modularity 

For more evidence the qubits are actually entangled, measure in a 
different basis and verify that the correlation persists 
Make a circuit for measuring in the X basis: 
 
 
 
Now add two new circuits to our Quantum Program, each made by 
combining the Bell state preparation circuit with one of the 
measurement circuits: 



Bell state with QISKit: inquiring about backends 

 
        

Request backend names from 
the program object 

Configure the API to access the 
online backends 



Bell state with QISKit: execution 

Send both circuits to the IBM Q Experience’s 5-qubit chip for execution: 
 
 

 
 
… and in a couple minutes: 

 
 

 
 
 Indeed, outcomes are correlated regardless of the choice of measurement basis 
 



Bell state with QISKit: circuit rewriting 
Q: But how did these circuits even run at all?! 

 
 

 

 
A: Execute = compile + run 

 
 

 
 
 
Transcompiler goals: 

– Map a given circuit into one that can be run on target backend 
– Optimize circuit performance by eliminating redundancies in instruction sequences 

 

Wrong direction! 

From qiskit.extensions.standard.cx: 

ibmqx4 

Original QASM 

Rewrite gates in backend’s basis 
Re-map circuit given coupling map 

Rewritten QASM 



Nuts and bolts: basic circuit rewriting 
The circuit rewriting methods (mapper module) execute a few simple 
fixed passes 

– 1. “unroll”: expands gate definitions to some level, expands loops 
– 2. “swap_mapper”: selects a layout and inserts SWAP gates as needed 
– 3. “cx_cancellation”: removes even runs of CNOT gates 
– 4. “optimize_1q_gates”: simplifies runs of single qubit gates 

 

SWAP insertion algorithm solves using a randomized, greedy layer-
by-layer approach 
 
Single qubit gate optimization attempts to minimize number of pulses 
 
Modular framework in development to enable extensibility and 
research  



Bell state with QISKit: local Python simulators 

Often we would like to examine the expected quantum state 
• Using the simulator in QISKit we may “cheat” and ask directly for the state 
Run these examples on circuits that don’t contain measurement 

Set ”shots=1” for this 
behavior 



Bell state with QISKit: plotting states 

Plotting a state using the visualization module: 
• The qiskit.tools.visualization model contains several methods of visualizing 

quantum states: 



Example of advanced QISKit features 

• To fully determine a 2-qubit state experimentally, we need to obtain 
counts from 9 different measurement circuits corresponding to the 
Pauli group elements, i.e. we need to do quantum state 
tomography. 
 

Is there an easier way to implement this? 
• Yes! We have the full power of Python, so write functions that 
automate necessary steps 

• Many useful routines are already implemented in QISKit modules, 
and more are coming! 



Bell state with QISKit: state tomography 

• We can implement quantum state tomography using the QISKit 
tomography module: 
 
 

• This automates generating of measurement circuits, and 
reconstructing the density matrix: 

• Generate measurement circuits: 



Bell state with QISKit: state tomography 

• Execute the circuits on a simulator to obtain count results: 



Bell state with QISKit: state tomography 

• Post-process data to reconstruct state 
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Prepare a trial state 𝝍 𝜽  
and compute its energy 𝑬(𝜽) 

Use classical optimizer to choose  
a new value of 𝜽 to try 
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Experimental Results (2 qubits): Hydrogen Molecule 

d d 

February 2017 78 

4 spin orbitals mapped to 2 qubits  
HA: 1s1 HB: 1s1 

HA
 HB

 

 arXiv:1704.05018 

Dissociation d = 4 Å 
H = (-0.70461)II+(0.00012)ZI+(0.00012)IZ+ 
     (1.6673e-10)ZZ+(0.33438)XX 

Equilibrium d = 0.735 Å 
H = (-1.05237)II+(0.39735)ZI+(0.39735)IZ+ 
     (0.11279)ZZ+(0.18093)XX 

Equilibrium 
(d=0.735 Å) 

Dissociation 
(d=4 Å) 

Exact -1.858 -1.0655 

1 UENT -1.8365 -1.0595 

2 UENT -1.8229 -1.0586 



Toolboxes and tutorials 

Toolboxes (part of SDK): libraries of helper 
functions for… 

– Quantum state visualization and analysis 
– Optimization problems 
– Quantum chemistry problems 
– Verification and validation 
– File I/O 

 

Tutorials (github.com/QISKit/qiskit-
tutorial): Jupyter notebooks illustrating 
concepts, usage, applications, etc. 

– Currently 24 notebooks spanning 5 categories: 
1.  Introduction to the tools 
2.  Exploring quantum information concepts 
3.  Verification tools for quantum information science 
4.  Applications of short-depth quantum circuits 
5.  Quantum games 



- Interface for experiments or simulations to enable research and applications pre-fault-tolerance 
- Growing software stack, including higher-level tutorials and examples 
- Interface to quantum devices: IBM QX and local devices 
- Open source development 

- New releases every few months 
- Ongoing projects to improve circuit rewriting architecture, simulators, visualizers, backend interfaces 

https://www.qiskit.org/ 
 
https://github.com/QISKit 
 
https://qiskit.slack.com/ 
 

 explore 

contribute 

help define 

https://www.qiskit.org/
https://github.com/QISKit
https://qiskit.slack.com/
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