
1

QISKit
Jay Gambetta

2 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures

Exploring Quantum Possibilities

Quantum hardware is evolving
rapidly, with many approaches
being pursued
Even individual qubits exhibit day-
to-day performance variability

http://vandersypenlab.tudelft

http://www.quantumoptics.at

http://topocondmat.org/
w2_majorana/braiding.html

???
IBM

3 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures

Exploring Quantum Possibilities

QISKit goal is to provide an
open-source platform for
building quantum programs that
can keep up with changing
hardware

http://vandersypenlab.tudelft

http://www.quantumoptics.at

http://topocondmat.org/
w2_majorana/braiding.html

QISKit
IBM

The image part with relationship ID rId2 was not found in the file.

4 © 2017 IBM Corporation

• Quantum Information Software Kit.
•
• Is an open source software development kit for writing

quantum computing experiments, programs, and
applications.

QISKit

5

6

7

8

The image part with relationship ID rId2 was not found in the file.

9 © 2017 IBM Corporation

• Why is quantum computing exciting?
 Why Now?
 To solve problems that are intractable for classical computers
 Fault-tolerant vs approximate quantum computing

• What does QC look like today?
 IBM Q superconducting hardware

• QISKit

Overview

The image part with relationship ID rId2 was not found in the file.

12 © 2017 IBM Corporation

P
er

fo
rm

an
ce

Moore’s Law

The image part with relationship ID rId2 was not found in the file.

13 © 2017 IBM Corporation

P
er

fo
rm

an
ce

Moore’s Law

Quantum computing is a new
model of computation

14 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Exponential scaling

There's a famous legend outlined in “IBM Mathematics Peep Show”

The inventor of chess showed it to the emperor of India, and the emperor was so impressed
he said "Name your reward!"
The man responded. "Oh emperor, my wishes
are simple. I only wish for this. For the next 64
days I will come back and for the first day please
only give me one grain of rice for the first square
of the chessboard, on the second day two grains
for the next square, four for the next, eight for the
next and so on for all 64 squares, with each
square having double the number of grains as
the square before."

The emperor agreed, amazed that the man had
asked for such a small reward - or so he thought.
..

https://www.youtube.com/watch?v=t3d0Y-JpRRg

On the first day…

Photo: thepowerofimpossibility.com

After one week…127 grains of rice

Photo: wikimedia

After one month… 1,070,000,000 grains of rice

After 64 days … 535 billion metric tons of rice

There are many intractable problems where the best known algorithm has
runtime that scales exponentially with input size

Hard Problems (exponential)

Linear
programming

P
“Easy” Problems

(Polynomial)

NP
“Hard” problems (exponential)

Linear Programming

19

Limitations of conventional computers

20 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

A new model of computation

Quantum Applications is about working out how to use these two
principles in a new model of computation

a physical system in a perfectly definite state can still behave randomly

two systems that are too far apart to influence each other can nevertheless behave in ways
that, though individually random, are somehow strongly correlated.

Superposition

Runs 1024

The outcomes appear to be random

Superposition

Superposition

Runs 1024

Doing it twice makes it certain again. Can not be a classical random mixture

Entanglement

Entanglement

Runs 4096

qubit 1 it has no information about the quantum state. It is not superposition or a
computational state.

Entanglement

Correlated in the computational basis

Runs 4096

Entanglement

Exp 5. Preparing the qubit in the “00+11” state

Correlated in the superposition basis

Runs 4096

Quantum Computing and Quantum Circuits I

The image part with relationship ID rId2 was not found in the file.

29 © 2017 IBM Corporation

Quantum Computing and Quantum Circuits II

 A universal set of gates

A quantum computation: for all

The 2 – qubit CNOT gate CNOT with all single

Quantum math in a single slide

It is like “Probability theory with Minus Signs”

Probability Theory: Quantum Theory:

Linear transformations that conserve 2-norm of amplitude
vectors: Unitary matrices

Linear transformations that conserve 1-norm of probability
vectors: Stochastic matrices

There exists efficient ways to simulate this exponential There does not exist efficient ways to simulate this
exponential (negative sign)

31 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

A Quantum Algorithm

The spread The problem The magic

First part of the algorithm
is make a equal

superposition of all 2n
states. Apply H gates

The second part is to
encode the problem into

this states (phases on the
on the all 2n states.

The magic of quantum
algorithms is to interfere all
these states back to a few
outcomes containing the

solution

32 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Quantum speedups

…Quantum computers are the only novel hardware which changes the
game

Problems (polynomial, P)

Hard Problems (exponential)

Linear
programming

 P
Easy Problems
 (Polynomial)

NP
Hard Problems

Quantum Easy Factoring

Simulating Quantum Mechanics What else is in here?

32

33 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Types of quantum computing

Analog / quantum Annealing
A special built system which uses quantum effects to solve/emulate a specific problem. It has limited
programmability and unclear if and when it has a speed up over conventional computers.

The holy grail of quantum information science. Allows one to run useful quantum algorithms which achieve
exponential speed ups over their classical counterparts. However the over head of quantum error correction
estimates 1M-5M qubits

Universal fault-tolerant quantum computer

Approximate quantum computer
A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K
qubits

34 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Types of quantum computing

Analog / quantum Annealing
A special built system which uses quantum effects to solve/emulate a specific problem. It has limited
programmability and unclear if and when it has a speed up over conventional computers.

The holy grail of quantum information science. Allows one to run useful quantum algorithms which achieve
exponential speed ups over their classical counterparts. However the over head of quantum error correction
estimates 1M-5M qubits

Universal fault-tolerant quantum computer

Approximate quantum computer
A quantum device which does not have fault tolerance, with the goal of demonstrating a useful application
by interacting with a classical computing system, e.g. quantum chemistry, optimization. Estimate 1K-5K
qubits

35 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures

Universal
fault-tolerant
QC (distant

future)

Simple “toy”
demonstrations

(present day)

Toward a Quantum Approximate computer

Circuit width (# of qubits)

C
irc

ui
t d

ep
th

 (#
 o

f o
pe

ra
tio

ns
)

 1,000 1,000,000

1,000,000

1,000

1

Small circuits,
can not predict
(next several

years)

Goal: solve real problems with
small quantum processors
• Step 1: Build them
• Step 2: Program them!

Quantum advantage

The image part with relationship ID rId2 was not found in the file.

36 © 2017 IBM Corporation

Technical goals for QISKit software platform

 Plan for continued improvement of quantum devices
– Increasing size, capability, and fidelity
 Build software tools for working with these near-term quantum computing systems

– Short-depth circuits: enable investigation of algorithms toward quantum advantage
– Pre-fault-tolerance: enable exploration of broad error mitigation techniques
 Create a framework for experiments, simulations, and analysis

– Backend-independent interface for running experiments
– Multiple simulators and analysis tools
– Circuit rewriting infrastructure
 Optimization, scheduling, hardware mapping

 Increase capabilities and add features over time
– Expose lower level control interfaces and extend mapping framework
 Access to timing and pulse shape

– Introduce higher level abstractions

37 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures

IBM Quantum Experience

The image part with relationship ID rId2 was not found in the file.

38 © 2017 IBM Corporation

Anatomy of a superconducting qubit device

1 mm

Qubits:
 Single-junction transmon
 Frequency ~ 5 GHz
 Anharmonicity ~ 0.3 GHz

Resonators:
 Co-planar waveguide
 Frequency ~ 6 – 7 GHz
 Roles:
 Individual qubit readout
 Qubit coupling (“bus”)

Corcoles et al., Nat. Commun. 6, 6979 (2015)

 Anharmonic oscillator (“transmon*” qubit) with ~ 5% anharmonicity
 Using two lowest energy eigenstates as a qubit

*Transmon pioneered by Schoelkopf group, from Yale University. Koch et. al. PRA 76, 04319 (2007)

100 nm

FIXED-FREQUENCY SUPERCONDUCTING
JOSEPSON JUNCTION QUBIT

0.5 cm

40 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Qubit

Bus

1 mm

COULPING QUBITS BY BUS RESONATOR

g1 g2

 Bus frequency detuned from qubit
frequencies. |fqubit – fbus| >> g
 Two-qubit exchange interaction J via

virtual photons is mediated by the bus
resonator.

The image part with relationship ID rId2 was not found in the file.

41 © 2017 IBM Corporation

Devices used in the IBM Q Experience

•Properties of current devices:
– Single-junction transmon qubits
– T1 ~ T2 ~ 50 µs
– 1Q gate fidelities > 99%
– 2Q gate fidelities > 95%
– Measurement fidelities > 93%
– Nearest-neighbor couplings

•Current device offerings:
– 5-qubit device (“ibmqx4”): access via web GUI and QISKit API
– 16-qubit device (“ibmqx5”): access via QISKit API only

42 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Circuit building blocks: single-qubit basis gates

Goals: achieve universal qubit control, maximize fidelity, minimize need for calibrations
 Arbitrary rotation on the Bloch sphere = up to 3 successive rotations around fixed axes:

Good news: arbitrary Rz can be done instantaneously and exactly

– Just adjust phase of carrier to change reference frame

 Bad news: can’t calibrate Ry(θ) to high fidelity for arbitrary θ
– Solution: re-write arbitrary gates to use N frame changes plus

N - 1 well-calibrated gates with fixed axis and angle (N = 1, 2, or 3)

 X

Y

Z
|𝟎⟩

|𝟏⟩
|+⟩

|−⟩
|⟩ |⟩

FC = frame change
GD = Gaussian w/ DRAG

Yπ/2

Xπ/2 X−π/2

The image part with relationship ID rId2 was not found in the file.

43 © 2017 IBM Corporation

Circuit building blocks: two-qubit basis gate

 In conjunction with the single-qubit gates, need just a single

entangling gate for universal control (ideally well-calibrated)
 Due to physics of the cross resonance effect, optimal direction of

CNOT (i.e. which qubit is control vs. target) depends on
frequency and anharmonicity of the qubits involved

–Implement CNOT in only one direction for each qubit pair
–Include directionality in coupling map given to user

 In practice, cross-resonance tone is split in half, with a refocusing
pulse in the middle to cancel slow fluctuations CNOT gates on a 5-qubit

chip Arrows go from
control to target

The image part with relationship ID rId2 was not found in the file.

44 © 2017 IBM Corporation

Different Backends

https://quantumexperience.ng.bluemix.net/qx/devices

Additional backend information

https://github.com/QISKit/ibmqx-backend-information

Much more than superconducting qubits on the cloud!

Over a million
experiments… from all
seven continents!

Explanatory videos

Community of over 60,000 users

47 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures OpenQASM

48 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

OpenQASM (Quantum Assembly Language)

Open to discussions about
extensions and modifications!

https://arxiv.org/abs/1707.03429
https://github.com/QISKit/openqasm

Express data dependency but not explicit
timing of instructions; separation of
quantum and classical processing;
hardware agnostic

https://arxiv.org/abs/1707.03429
https://github.com/QISKit/openqasm

49 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

OpenQASM features

Define quantum and classical registers: qreg qr[8]; creg cr[8];
Apply built-in unitary operations U and CX: U(pi/2,0,pi) qr[0]; CX
qr[0],qr[1];

Define additional gates as subroutines using combinations of U and CX:
gate swap a,b { //swap the quantum states of qubits a and b
 CX a,b;
 CX b,a;
 CX a,b;
}

 Include subroutines defined in other files: include “qelib1.inc”
Perform register-level operations: h qr; CX qra,qrb;
Measure qubits: measure qr[0] -> cr[0];
Use barriers to limit compiler optimizations: x qr[0]; barrier qr[0]; x
qr[0];
Apply classically conditioned operations: if (cr[0]==1) { x qr[1]; }

50 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures QISKIT API

QISKit API: an interface to quantum hardware

Submit requests for processing by quantum
hardware

– Name of quantum backend to use
– Quantum circuit(s) to run, in QASM format
– # of trials (“shots”) to run

Retrieve results and metadata for client-side
processing

– Probability of each outcome
– Execution time and duration
– Most recent calibration data at time of execution

Get backend details
– Static properties: device type, qubit coupling map, basis gates, description/comments
– Dynamic properties: coherence times, operation fidelities, time of last calibration
– Status: availability, length of job queue

Token-based authentication, tracking of
“credits”

5Q
controller

16Q
controller

High-level controller

online
sims

Connect the QISKit API (see github.com/QISKit/qiskit-api-py) to the IBM Q Experience

Get a list of IBM Q Experience backends currently online

Get details about a given backend

QISKit API: connecting to the IBM Q Experience

...

QISKit API: making a Bell state

Submit job with QASM for making Bell state

Check job status

Retrieve results

  As expected, 00 and 11 appear with similar probabilities
 and 01 and 10 are suppressed

...

That’s great, but…

What if I want to work with many qubits?
What if I want to optimize my program to maximize fidelity?
What if I want to assemble complex circuits from simple ones?
What if I want to use a high level language to construct my circuits?
What if I want to avoid certain qubits based on device calibration
data?
What if I want to run the same circuit on completely different
quantum hardware?
What if …. ?

55 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

• Quantum software and architectures QISKIT SDK

Open development process

Documentation from getting
started to developing

PYTHON

SWIFT

JAVASCRIPT

QISKit SDK

Goal: enable research and further
development of applications for near-term
quantum backends
Central components:

– Quantum Program class (see illustration)
– Quantum circuit transcompiler
– Quantum circuit backends

Typical workflow:
1. Initialize quantum program
2. Define quantum and classical registers
3. Build quantum circuits
4. Rewrite circuits to run on target backend
5. Execute job
6. Analyze results

Quantum Program
Quantum and Classical Registers

Backend Directory

Execution Results

Quantum Circuits

State Counts
00000 439
00011 561 github.com/QISKit/qiskit-sdk-py

59 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

QISKit: Getting started

 Download qiskit-tutorial from https://github.com/QISKit/qiskit-tutoriall
• Install qiskit (optionally download SDK from https://github.com/QISKit/qiskit-sdk-py)
• Navigate to qiskit-tutorial folder and launch Jupyter notebook

• Create a new Python 3 notebook and import qiskit

https://github.com/QISKit/qiskit-tutoria
https://github.com/QISKit/qiskit-sdk-py)

Initializing a quantum program

The main interface to QISKit is the QuantumProgram class.
• Collection of quantum circuits and methods to interact with them
• Build and store quantum circuits
• Import or export OpenQASM text circuits
• Interface with backends to run experiments (on real hardware or simulators)

Basic steps to initialize a new program
1. Create a new QuantumProgram
2. Add 1 or more quantum registers
3. Add 1 or more classical registers

Bell state with QISKit: building a basic circuit

Create quantum program and
associated registers

Define a circuit to prepare a
Bell state

qiskit.extensions.standard
defines methods for common
operations (similar to qelib1.inc).
Need others? Add an extension!

Define a circuit to measure
both qubits in the default (Z)
basis

What’s in the standard extension?

Available circuit operation methods:

• Single qubit gates
• iden, x, y, z, h, s, sdg, t, tdg, u1, u2, u3, rx, ry, rz

• Two qubit gates (cx, cy, cz, cu1, cu2)

• Three qubit gates (ccx, cswap)

• Measurement, reset, and barrier (measure, reset, barrier)

Additional circuit construction methods:

 Invert gates with .inverse
– mycirc.u1(pi/8).inverse()

 Add a classical control with .c_if
– mycirc.x(q[0]).c_if(outcome,1)

Bell state with QISKit: getting some information

Get quantum circuit and
program register names

Get OpenQASM text for the
quantum circuits

Bell state with QISKit: harnessing circuit modularity

For more evidence the qubits are actually entangled, measure in a
different basis and verify that the correlation persists
Make a circuit for measuring in the X basis:

Now add two new circuits to our Quantum Program, each made by
combining the Bell state preparation circuit with one of the
measurement circuits:

Bell state with QISKit: inquiring about backends

Request backend names from
the program object

Configure the API to access the
online backends

Bell state with QISKit: execution

Send both circuits to the IBM Q Experience’s 5-qubit chip for execution:

… and in a couple minutes:

 Indeed, outcomes are correlated regardless of the choice of measurement basis


Bell state with QISKit: circuit rewriting
Q: But how did these circuits even run at all?!

A: Execute = compile + run

Transcompiler goals:

– Map a given circuit into one that can be run on target backend
– Optimize circuit performance by eliminating redundancies in instruction sequences

Wrong direction!

From qiskit.extensions.standard.cx:

ibmqx4

Original QASM

Rewrite gates in backend’s basis
Re-map circuit given coupling map

Rewritten QASM

Nuts and bolts: basic circuit rewriting
The circuit rewriting methods (mapper module) execute a few simple
fixed passes

– 1. “unroll”: expands gate definitions to some level, expands loops
– 2. “swap_mapper”: selects a layout and inserts SWAP gates as needed
– 3. “cx_cancellation”: removes even runs of CNOT gates
– 4. “optimize_1q_gates”: simplifies runs of single qubit gates

SWAP insertion algorithm solves using a randomized, greedy layer-
by-layer approach

Single qubit gate optimization attempts to minimize number of pulses

Modular framework in development to enable extensibility and
research

Bell state with QISKit: local Python simulators

Often we would like to examine the expected quantum state
• Using the simulator in QISKit we may “cheat” and ask directly for the state
Run these examples on circuits that don’t contain measurement

Set ”shots=1” for this
behavior

Bell state with QISKit: plotting states

Plotting a state using the visualization module:
• The qiskit.tools.visualization model contains several methods of visualizing

quantum states:

Example of advanced QISKit features

• To fully determine a 2-qubit state experimentally, we need to obtain
counts from 9 different measurement circuits corresponding to the
Pauli group elements, i.e. we need to do quantum state
tomography.

Is there an easier way to implement this?
• Yes! We have the full power of Python, so write functions that
automate necessary steps

• Many useful routines are already implemented in QISKit modules,
and more are coming!

Bell state with QISKit: state tomography

• We can implement quantum state tomography using the QISKit
tomography module:

• This automates generating of measurement circuits, and
reconstructing the density matrix:

• Generate measurement circuits:

Bell state with QISKit: state tomography

• Execute the circuits on a simulator to obtain count results:

Bell state with QISKit: state tomography

• Post-process data to reconstruct state

The image part with relationship ID rId2 was not found in the file.

75 © 2017 IBM Corporation

Prepare a trial state 𝝍 𝜽
and compute its energy 𝑬(𝜽)

Use classical optimizer to choose
a new value of 𝜽 to try

The image part with relationship ID rId2 was not found in the file.

76 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

77 © 2017 IBM Corporation

78 © 2017 IBM Corporation

The image part with relationship ID rId2 was not found in the file.

Experimental Results (2 qubits): Hydrogen Molecule

d d

February 2017 78

4 spin orbitals mapped to 2 qubits
HA: 1s1 HB: 1s1

HA
 HB

 arXiv:1704.05018

Dissociation d = 4 Å
H = (-0.70461)II+(0.00012)ZI+(0.00012)IZ+
 (1.6673e-10)ZZ+(0.33438)XX

Equilibrium d = 0.735 Å
H = (-1.05237)II+(0.39735)ZI+(0.39735)IZ+
 (0.11279)ZZ+(0.18093)XX

Equilibrium
(d=0.735 Å)

Dissociation
(d=4 Å)

Exact -1.858 -1.0655

1 UENT -1.8365 -1.0595

2 UENT -1.8229 -1.0586

Toolboxes and tutorials

Toolboxes (part of SDK): libraries of helper
functions for…

– Quantum state visualization and analysis
– Optimization problems
– Quantum chemistry problems
– Verification and validation
– File I/O

Tutorials (github.com/QISKit/qiskit-
tutorial): Jupyter notebooks illustrating
concepts, usage, applications, etc.

– Currently 24 notebooks spanning 5 categories:
1. Introduction to the tools
2. Exploring quantum information concepts
3. Verification tools for quantum information science
4. Applications of short-depth quantum circuits
5. Quantum games

- Interface for experiments or simulations to enable research and applications pre-fault-tolerance
- Growing software stack, including higher-level tutorials and examples
- Interface to quantum devices: IBM QX and local devices
- Open source development

- New releases every few months
- Ongoing projects to improve circuit rewriting architecture, simulators, visualizers, backend interfaces

https://www.qiskit.org/

https://github.com/QISKit

https://qiskit.slack.com/

 explore

contribute

help define

https://www.qiskit.org/
https://github.com/QISKit
https://qiskit.slack.com/

	Slide Number 1
	Exploring Quantum Possibilities
	Exploring Quantum Possibilities
	QISKit
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Overview
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Exponential scaling
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	A new model of computation�
	Superposition
	Superposition
	Superposition
	Entanglement
	Entanglement
	Entanglement
	Entanglement
	Slide Number 28
	Quantum Computing and Quantum Circuits II
	Slide Number 30
	A Quantum Algorithm
	Quantum speedups
	Types of quantum computing�
	Types of quantum computing�
	Toward a Quantum Approximate computer
	Technical goals for QISKit software platform
	Slide Number 37
	Anatomy of a superconducting qubit device
	Slide Number 39
	COULPING QUBITS BY BUS RESONATOR
	Slide Number 41
	Circuit building blocks: single-qubit basis gates
	Circuit building blocks: two-qubit basis gate�
	Different Backends
	Additional backend information
	Much more than superconducting qubits on the cloud!
	Slide Number 47
	OpenQASM (Quantum Assembly Language)
	OpenQASM features
	Slide Number 50
	QISKit API: an interface to quantum hardware
	QISKit API: connecting to the IBM Q Experience
	QISKit API: making a Bell state
	That’s great, but…
	Slide Number 55
	Slide Number 56
	Slide Number 57
	QISKit SDK
	QISKit: Getting started
	Initializing a quantum program
	Bell state with QISKit: building a basic circuit
	What’s in the standard extension?
	Bell state with QISKit: getting some information
	Bell state with QISKit: harnessing circuit modularity
	Bell state with QISKit: inquiring about backends
	Bell state with QISKit: execution
	Bell state with QISKit: circuit rewriting
	Nuts and bolts: basic circuit rewriting
	Bell state with QISKit: local Python simulators
	Bell state with QISKit: plotting states
	Example of advanced QISKit features
	Bell state with QISKit: state tomography
	Bell state with QISKit: state tomography
	Bell state with QISKit: state tomography
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Experimental Results (2 qubits): Hydrogen Molecule
	Toolboxes and tutorials
	Slide Number 80

