
• Learning Center tools for professional development: http://learning.acm.org
• Safari Learning Platform

• 50,000+ trusted technical books, video courses, and O’Reilly conference videos
• Hundreds of learning paths, online learning tools, case studies

• Skillsoft Learning Collections
• 1,800+ Skillsoft courses, virtual labs, test preps, live mentoring for software professionals covering programming,

data management, DevOps, cybersecurity, networking, project management, more
• 4,800+ 30,000+ task-based short videos for “just-in-time” learning
• Training toward top vendor certifications (CEH, Cisco, CISSP, CompTIA, ITIL, PMI, etc.)

• 1,200+ DRM—free books in CS on the ScienceDirect platform (including Morgan Kaufmann and Syngress titles)
• Learning Webinars from thought leaders and top practitioners
• Podcast interviews with innovators, entrepreneurs, and award winners

• Popular publications:
• Flagship Communications of the ACM (CACM) magazine: http://cacm.acm.org/
• ACM Queue magazine for practitioners: http://queue.acm.org/

• ACM Digital Library, the world’s most comprehensive database of computing literature: http://dl.acm.org.
• International conferences that draw leading experts on a broad spectrum of computing topics:

http://www.acm.org/conferences.
• Prestigious awards, including the ACM A.M. Turing and ACM Prize in Computing: http://awards.acm.org
• And much more… http://www.acm.org.

ACM Highlights

The History of
Software Engineering

Grady Booch
IBM Fellow & Chief Scientist for Software Engineering

Email: gbooch@us.ibm.com

Twitter: @grady_booch
Web: computingthehumanexperience.com

V1.0

Imhotep is considered the first engineer; he
lived in Egypt around the 27th century BCE,
and served as the chancellor to the
pharaoh Djoser, architect of the step
pyramid, and high priest of the sun god Ra.

In the 19th century BCE, the Code of
Hammurabi had this to say: If a builder
erect a house or a man and do not make its
construction firm, and the house on which
he built collapse and cause the death of the
owner of the house, that builder shall be
put to death.

Ismail al-Jazari is another candidate for
consideration as the first engineer; he lived
in Turkey around the 12th century CE,
during the Islamic Golden Age. Author of
The Book of Knowledge of Ingenious
Mechanical Devices, he is also considered
the father of robotics.

The term systems engineering dates back
to Bell Telephone Laboratories in the early
1940s, with major applications of systems
engineering during World War II.

Worldwide, engineering is largely an
occupational closure, requiring graduation
from an accredited college or university, the
passing of a standard examination, and
experience working as an apprentice under
other licensed engineers.

The first computers were
human (and, for the most part,

women).

A pioneer in Boolean logic
circuits, Stibitz coined the term

digital around 1942.

Co-inventor of the Fast-
Fourier Transform algorithm,

Tukey coined the term
software in 1952.

Prompted by the so-called software crisis -
marked by the rapid rise of computational
power together with the growing complexity
of problems to be addressed - NATO held
a Software Engineering Conference in
1968 and again in 1969. Bauer proposed
the term software engineering to mean the
“establishment and use of sound
engineering principles to economically
obtain software that is reliable and works
on real machines efficiently.”

In the August 1966 issue of
Communications of the ACM, Oettinger had
this to say: “A concern with the science of
computing and information processing,
while undeniably of the utmost importance
and an historic root of our organization is,
alone, too exclusive. We must recognize
ourselves as members of
an engineering profession, be it hardware
engineering or software engineering, a
profession without artificial and irrelevant
boundaries like that between ‘scientific’ and
‘business’ applications.”

First a developer for SAGE and then the
lead developer for the Skylab and Apollo
flight software, Hamilton coined the term
software engineering around 1963 or 1964
while working at the Charles Stark Draper
Laboratory at MIT.

“To me programming is more
than an important practical art.

It is also a gigantic
undertaking in the foundations

of knowledge.”

“The art of programming is the
art of organizing complexity.”

“Computer programming is an
art, because it applies

accumulated knowledge to the
world, and especially because
it produces objects of beauty.”

“Software engineering is often treated as a
branch of computer science. This is akin to
regarding chemical engineering as a
branch of chemistry. We need both
chemists and chemical engineers but they
are very different. Chemists are scientists,
chemical engineers are engineers.
Software engineering and computer
science have the same relationship.”

System

Cost
Schedule

Legal

Ethical

Security

Safety

Reliability

Performance
Functionality

Evolution

Deployment

Development

Compatibility

Complexity

Context

Mission

programming (1842) Boolean algebra (1847)

25

human computing (1896) human computing (1896)

27

process charts (1921) analysis (1921)

29

human computing (1938) punch card methods (1940)

31

relay logic (1937) theoretical computer science
(1944)

electromechanical
computation (1944)

machine-independent
programming (1952)

33

theoretical computer
science (1936)

programmable computation
(1943)

high order languages (1936) workflow (1943)

35

programming (1946) programming (1946) programming (1946) programming (1946) programming (1946)

programming (1948) subroutine (1949) programming (1949) programming (1949) subroutine (1949)

38

flowchart (1947) flowchart (1947) imperative
programming (1946)

40

operating system (1951) imperative
programming (1960)

imperative
programming (1960)

imperative
programming (1960)

1955

42

real time computing
(1951)

program management (1957) programming services (1959) time sharing (1959)

44

modular
programming/coupling &

cohesion/data flow (1968)

structured programming
(1969)

project management (1964)

formal systems (1967) object-oriented
programming (1967)

formal systems (1969) object-oriented
programming (1967)

47

“Software during the early days of this project was treated like a stepchild and not taken as
seriously as other engineering disciplines, such as hardware engineering; and it was
regarded as an art and as magic, not a science. I had always believed that both art and
science were involved in its creation, but at that time most thought otherwise. Knowing
this, I fought to bring the software legitimacy so that it (and those building it) would be
given its due respect and thus I began to use the term ‘software engineering’ to distinguish
it from hardware and other kinds of engineering; yet, treat each type of engineering as part
of the overall systems engineering process. When I first started using this phrase, it was
considered to be quite amusing. It was an ongoing joke for a long time. They liked to kid
me about my radical ideas. Software eventually and necessarily gained the same respect
as any other discipline.”

https://medium.com/@verne/margaret-hamilton-the-engineer-who-took-the-apollo-to-the-moon-7d550c73d3fa

49

process (1970) information hiding
(1972)

entity-relationship
modeling (1976)

abstract data types
(1974)

stepwise
refinement/abstraction

(1971/1976)

SADT (1969) structured design
(1972)

structured analysis
and system specification

(1978)

Jackson structured
design (1975)

structured design
(1972)

functional programming
(1977)

distributed computing (1978) software inspection (1976)

OMT (1990) Objectory (1990) Booch method (1986)

1997

object-oriented
analysis (1988)

structured analysis (1989) object-oriented
analysis and design (1990)

Responsibility
driven design (1989)

software engineering
economics (1981)

spiral model (1988)

component based
software engineering

(1986)

capability maturity
model (1988)

clean room software
engineering (1987)

empirical software
engineering (1986)

Information engineering/CASE
(1981)

Zachman framework (1987)

1993

Defense Systems
Software Development

(1985)

Structured Systems
Analysis and Design

Methodologies (1981)

1984

free software (1983) visual programming (1991) Literate programming (1983)

SCRUM (1995) extreme programming (1996) Rational Unified Process
(2000)

refactoring (1999)

Rational Unified
Process/software architecture

(1995)

software architecture (1996) Design patterns (1994)

1993

open source (1997) outsourcing (2001) configuration management
(1997)

63

git (2005) computational
thinking (2006)

clean code (2008) Stackoverflow (2007) organizational patterns
(2005)

2001

devops (2008) devops (2008)

platform computing (2000) platform computing (2006)

69

Physics Algorithm Architecture Organization Economics Human

Software engineering

Computer science

The Software Engineering Body of
Knowledge was first released in 2004 (its
current version was published in 2014), and
addresses
• Software requirements
• Software design
• Software construction
• Software testing
• Software maintenance
• Software configuration management
• Software engineering management
• Software engineering process
• Software engineering models and

methods

The Systems Engineering Body of
Knowledge is an effort by the International
Council of Systems Engineering (INCOSE),
the Systems Engineering Research Center
(SERC), and the IEEE Computer Society to
codify the best practices of systems
engineering.

Mathematical Symbolic Personal Distributed &
Connected

Imagined
Realities

Mathematical Symbolic Personal Distributed &
Connected

Imagined
Realities

Human/computer interaction

Managing complexity

Fundamentals

Managing scale

Ethical and moral issues

76

The fundamentals always apply:
• Crisp abstractions
• Clear separation of concerns
• Balanced distribution of responsibilities
• Simplicity

Grow a system through the iterative,
incremental, and continuous release of its
executable architecture.

Still, there is work to be done:
• Orchestrating hybrid symbolic,

connectionist, and quantum models of
computation

• The architectural pendulum
• The edge/cloud pendulum
• Scale, in the presence of untrusted

components, legacy of considerable
inertia, and the general public

Software is the invisible writing that whispers
the stories of possibility to our hardware…

…and you are the storytellers.

Grady Booch
IBM Fellow & Chief Scientist for Software Engineering

Email: gbooch@us.ibm.com

Twitter: @grady_booch
Web: computingthehumanexperience.com

ACM: The Learning Continues…

• Questions/comments about this webcast? learning@acm.org

• ACM’s Discourse Page: http://on.acm.org

• ACM Learning Webinars (on-demand archive): http://webinar.acm.org

• ACM Learning Center: http://learning.acm.org

• ACM Queue: http://queue.acm.org

• ACM AiDecentralized Conference: https://www.aidecentralized.com/

mailto:learning@acm.org
http://on.acm.org/
http://webinar.acm.org/
http://webinar.acm.org/
http://learning.acm.org/
http://queue.acm.org/
https://www.aidecentralized.com/
https://www.aidecentralized.com/

	Slide Number 1
	The History of�Software Engineering
	Slide Number 3
	Slide Number 4
	Slide Number 5
	The History of�Software Engineering
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	ACM: The Learning Continues…

