
Rust
In It for the Long Haul

Carol (Nichols || Goulding) @carols10cents

is.gd/rustLH

• Online

• Print

https://doc.rust-lang.org/stable/book/
https://nostarch.com/rust

Manning
liveVideo

https://www.manning.com/livevideo/rust-in-motion?a_aid=cnichols&a_bid=6a993c2e
https://www.manning.com/livevideo/rust-in-motion?a_aid=cnichols&a_bid=6a993c2e

Integer 32

https://integer32.com/

Rust Core Team

(yep, I’m biased)

Plan
•Railroad industry

•C

•Rust

•What the software industry can
learn from the railroad industry

Plan
➡ Railroad industry

•C

•Rust

•What the software industry can
learn from the railroad industry

1830

Miles of Rail in the US

0

35,000

70,000

105,000

140,000

1840 1850 1860 1870 1880 1890

Wikipedia

https://en.wikipedia.org/wiki/Rail_transportation_in_the_United_States

Brakeman

Engraving by Peckwell

Published 1890 in The Railroad Conductor

Public Domain in the US, Wikipedia

https://en.wikipedia.org/wiki/File:900801-peckwell-apicnic.jpg

George
Westinghouse

Photo: public domain in the US, Wikipedia

https://commons.wikimedia.org/wiki/File:George_Westinghouse_1884.png

Air Brakes
•Compressed air

•Controls in the locomotive

•Air lines connecting all cars

•Apply brakes all at once

•Brakes on when there’s no pressure

– Cornelius Vanderbilt, owner of the
New York Central Railroad

“Do you pretend to tell me
that you could stop trains

with air?”

Ad in 1936 Railway Age

Public Domain in the US, Wikipedia

https://commons.wikimedia.org/wiki/File:Westinghouse_Air_Brake_Denver_Zephyr_7_November_1936.jpg

Ad in 1936 Railway Age

Public Domain in the US, Wikipedia

“The swift operation of these
nightly carriers is safeguarded
by Westinghouse Air Brakes”

https://commons.wikimedia.org/wiki/File:Westinghouse_Air_Brake_Denver_Zephyr_7_November_1936.jpg

–L.S. Coffin, Iowa Railroad Commissioner,
Senate Hearing, 1890

“They thought it was a necessity somehow,
that it occurred as a matter of course, that

some men had to be killed.”

https://books.google.com/books?id=-cIuAAAAMAAJ&printsec=frontcover&dq=brakeman&hl=en&sa=X&ved=0ahUKEwjnlcC15o3TAhUn_4MKHdpOCDc4ggEQ6AEIOTAG#v=onepage&q=brakeman&f=false

–Mr. Roberts, President of the Pennsylvania
Railroad Company, Senate Hearing, 1890

“If you are going to subject the railroad companies
to this class of supervision, then you might as well

go into the character of bridges, which is as
serious a question as we have to deal with, and
say that the bridges must conform to such and

such standards.”

https://books.google.com/books?id=-cIuAAAAMAAJ&printsec=frontcover&dq=brakeman&hl=en&sa=X&ved=0ahUKEwjnlcC15o3TAhUn_4MKHdpOCDc4ggEQ6AEIOTAG#v=onepage&q=brakeman&f=false

US Railroad
Safety Appliance Act

1893

Act fully enforced
1900

Not perfect;
Vast improvement

Plan
•Railroad industry

➡ C

•Rust

•What the software industry can
learn from the railroad industry

why C?

performance
👍

portability
👍

simplicity
👍

legacy code
👍

stability
👍

memory
unsafety
👎👎👎👎👎👎👎

Memory Safety Problems
•Use after free

•Double free

•Memory leaks

•Buffer overreads/overwrites

•Null pointers

•Data races

Memory Safety Problems
•Use after free

•Double free

•Memory leaks

•Buffer overreads/overwrites

•Null pointers

•Data races

😱

-Pulser_G2, A Demonstration of Stagefright-like Mistakes

“The best way to prevent these kinds of attacks
is either to use a higher level language, which

manages memory for you (albeit with less
performance), or to be very, very, very, very
careful when coding. More careful than the

entirety of the Android security team, for sure.”

https://www.xda-developers.com/a-demonstration-of-stagefright-like-mistakes/

–Catalin Cimpanu reporting on a presentation by Matt Miller, MS security
engineer. ZDNet, 2019-02-11

“Around 70 percent of all the vulnerabilities in
Microsoft products addressed through a

security update each year are
memory safety issues”

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

Efforts to make
C safer

valgrind

ASAN

UBSAN

IKOS

https://github.com/NASA-SW-VnV/ikos

MISRA

Write code
THEN

make it safe

Safe-C, Checked C

https://www.safe-c.org/start-en.html
https://www.infoworld.com/article/3084424/microsoft-open-sources-a-safer-version-of-c-language.html

C++

Plan
•Railroad industry

•C

➡ Rust

•What the software industry can
learn from the railroad industry

Rust

#1: Fixes common
memory safety

problems

Ownership
Borrowing

fn main() {

 let x = String::from("hi");

 println!("{}", x);

}

fn main() {

 let x = String::from("hi");

 println!("{}", x);

}

Allocates memory

fn main() {

 let x = String::from("hi");

 println!("{}", x);

}

Allocates memory

Owner

fn main() {

 let x = String::from("hi");

 println!("{}", x);

}

Allocates memory

Owner

Owner goes out of scope,
memory is cleaned up

fn main() {

 let x = String::from("hi");

 let y = x;

 println!("{}", x);

}

fn main() {

 let x = String::from("hi");

 let y = x;

 println!("{}", x);

}

Moves ownership

fn main() {

 let x = String::from("hi");

 let y = x;

 println!("{}", x);

}

error[E0382]: borrow of moved value: `x`

- value moved here

^ value borrowed
here after move

fn main() {

 let x = String::from("hi");

 let y = &x;

 println!("{}", x);

}

fn main() {

 let x = String::from("hi");

 let y = &x;

 println!("{}", x);

}

Immutable borrow

fn main() {

 let x = String::from("hi");

 let y = &x;

 println!("{}", x);

 println!("{}", y);

}

fn main() {

 let y = {

 let x = String::from("hi");

 &x

 };

 println!("{}", y);

}

fn main() {

 let y = {

 let x = String::from("hi");

 &x

 };

 println!("{}", y);

}

Returning a reference

fn main() {

 let y = {

 let x = String::from("hi");

 &x

 };

 println!("{}", y);

}

Returning a reference
x is cleaned up

error[E0597]: `x` does not live long enough
 --> src/main.rs:4:9
 |
2 | let y = {
 | - borrow later stored here
3 | let x = String::from("hi");
4 | &x
 | ^^ borrowed value does not live long enough
5 | };
 | - `x` dropped here while still borrowed

Rust Safety
• Either one mutable reference OR many immutable references

• No null, only Option

• Out-of-bounds access = at runtime, program stops

• Ownership rules apply across multiple threads

Computers are good at tedium.

⚠ Beep, boop. You
forgot a semicolon
in 23,982 places

#2: Systems
programming is for

superhumans
everyone

unsafe

Unsafe code can…
•Dereference a raw pointer

•Call an unsafe function

• Implement unsafe traits

•Mutate global variables

• Access fields of unions

👋 Look here for the
cause of memory

problems! 👋

Opt OUT

Further unsafe Info
•Building on an Unsafe Foundation -

Jason Orendorff, RBR 2018

•The Rustonomicon

https://youtu.be/rTo2u13lVcQ
https://youtu.be/rTo2u13lVcQ
https://doc.rust-lang.org/nomicon/

Logic bugs

Tests

Fuzzers

memory
safety👍 👍

performance
👍

portability
👍👎

simplicity
👎

legacy code
👍

legacy code
My "Rust out your C" Talk

https://github.com/carols10cents/rust-out-your-c-talk

stability
👍

stability
👍

*
*We reserve the right to fix compiler bugs, patch safety holes, and change type inference in ways that may occasionally require new type
annotations. We do not expect any of these changes to cause headaches when upgrading Rust. (more detailed documentation)

https://github.com/rust-lang/crates.io/issues/868#issuecomment-484693168

Has upgrading broken your code?

Yes - 7.4%

No - 92.6%

#3: stability
without

stagnation

Editions

https://rust-lang.github.io/rfcs/2052-epochs.html

Source
code

Source
code HIR

Source
code HIR MIR

Source
code HIR MIR LLVM

IR

Source
code HIR MIR LLVM

IR
Machine

code

Source
code HIR MIR

Borrow checking,
Optimizations,

Code generation

LLVM
IR

Machine
code

2015
Edition
Source
Code

HIR

MIR

Borrow Checking,
Optimizations,

Code Generation

LLVM
IR

Machine
Code

2018
Edition
Source
Code

HIR

No ecosystem split!!!

Rust 2015
Library

Rust 2018
Library

Rust 2018
Project

Rust 2015
Project

You pick when to
switch editions

(never is totally fine!)

rustfix

Rust 2.0X

// TODO
• ISO/ECMA Standard

•Compiler certification

• LTS Release

•Better cargo/build system integration

•Private crate hosting

• Improved ecosystem

#4: Large
Enterprises are

using Rust

Mozilla

CSS Component

Implications of Rewriting a Browser Component in Rust

By Diane Hosfelt, 2019-02-28

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

CSS Component
• Security bugs since Firefox started: 69

Implications of Rewriting a Browser Component in Rust

By Diane Hosfelt, 2019-02-28

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

CSS Component
• Security bugs since Firefox started: 69

•Rust would have prevented: 51

Implications of Rewriting a Browser Component in Rust

By Diane Hosfelt, 2019-02-28

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

CSS Component
• Security bugs since Firefox started: 69

•Rust would have prevented: 51

73.9%
Implications of Rewriting a Browser Component in Rust

By Diane Hosfelt, 2019-02-28

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

AppAmaGooBookSoft
•Apple

•Amazon - Firecracker

•Google - Fuchsia

•Facebook - Mononoke

•Microsoft - IoT Edge

https://firecracker-microvm.github.io/
https://en.wikipedia.org/wiki/Google_Fuchsia
https://github.com/facebookexperimental/mononoke
https://github.com/Azure/iotedge

#5: Rust
Governance

No BDFL

Teams and Working Groups
• Programming language theorists and designers

• Enterprise users

• Hobby users

• People from low-level languages

• People from high-level languages

• People from functional languages

Decisions made
via public RFCs

Code of
Conduct

Rust’s staying power
• Significant improvement in memory safety over the

status quo

• More programmers can write and maintain it

• Editions enable stability without stagnation

• Large companies are depending on it

• Governance set up to endure

Plan
•Railroad industry

•C

•Rust

➡ What the software industry can
learn from the railroad industry

Silicon Valley
arrogance

Juicero shows what’s wrong
with Silicon Valley thinking

–Christine Emba, Washington Post, 2017-04-24

https://www.washingtonpost.com/blogs/post-partisan/wp/2017/04/24/juicero-shows-whats-wrong-with-silicon-valley-thinking/?utm_term=.8e8d546d5e3c

The Lyft Shuttle is pretty
much a glorified city bus —
with fewer poor people

–Keith Spencer, Salon, 2017-06-19

https://www.salon.com/2017/06/19/lyfts-shuttle-is-pretty-much-a-glorified-city-bus-with-fewer-poor-people/

–Nick Allen, The Telegraph, 2018-07-14

Elon Musk ‘can stick his
submarine where it hurts’
says British diver who helped
Thai cave rescue

https://www.telegraph.co.uk/news/2018/07/14/elon-musk-can-stick-submarine-hurts-says-british-diver-helped/

Trains not stopping =
people dying

Memory unsafety??
= ???

Actual Consequences

Actual Consequences

WannaCry Ransomware
May 2017

Actual Consequences

Actual Consequences

+ =X

Actual Consequences

+ =X

Actual Consequences

+ =X
X

Actual Consequences

+ =

Images from Shastry, Eucalyp, and Maxim Kulikov via the Noun Project

X
X people

dying

July 17, 2019
 House Financial Services Committee

Hearing on Facebook’s Libra Cryptocurrency

July 17, 2019
 House Financial Services Committee

Hearing on Facebook’s Libra Cryptocurrency

Congressman Riggleman
of Virginia

July 17, 2019
 House Financial Services Committee

Hearing on Facebook’s Libra Cryptocurrency

Congressman Riggleman
of Virginia

David Marcus
Head of Calibra at Facebook

Not the norm!!!

We are our own
informed consumers

1830 -> 1869 -> 1900
39 years 31 years

1973 -> 2015 -> ????
42 years ?? years

Are we better?

Rust
In It for the Long Haul

Rust
In It for the Long Haul???

I could be
wrong!

Why not all of them?
🤷

new
mistakes!

50% off Rust in
Motion course at

manning.com:
tsrust

is.gd/rustLH
@carols10cents

