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What are Recommender Systems?

» Tools that help narrow an otherwise
overwhelming set of choices

* Filters (categorize, select, or remove)
 Common example, e-mail filters
* Can have filters sift out inappropriate products

* Recommendations
* Often “product placement” or top-n lists
 Direct to customer or via sales agent

* Predicted values (e.g., hotel/restaurant stars)
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Level of Personalization

» Generic Recommendation

* Everyone receives the same; e.g. top sellers

» Demographic Personalization
* Targeted to people based on categories

» Ephemeral Personalization (Context)

* Matched to current activity (people who like ..)

» Persistent Personalization (Profiles)
* Matched to entire profile of activity/info
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Recommendation Approaches

Manual (marketer) recommendations
* “Sell the fish!”
Simple summary statistics
* Four-star hotel or cruise
Product Associations
* What items “go together”
Content-based techniques
* Learning from single-user profiles
Collaborative techniques
* Learning from other users’ profiles too
All of the above ... advanced ML techniques
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Understanding the Computation
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User-User Collaborative Filtering
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ltem-Based Collaborative Filtering
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But Today’s Solutions Have Evolved ....
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Modern Recommender Systems

l Latent Factor
Models

Learning
Models
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So much technology, yet ...

» Lousy recommendations are everywhere!
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What makes recommendations useful?

» Accuracy — likelihood of adoption

» Novelty — not something they would have found
or adopted anyway

» Diversity — not all recommended the same

» Personalization — feeling that recommendation
feels specific to recipient

» Explainability — can fit a story to the
recommendation

» Business value —don’t recommend what you
don’t want to offer/sell
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A Bit of RecSys Metrics History

» Researchers

MAE, MSE, RMSE
Correlation (rate/pred)
Error Rates

Retention Rates

Top-k Metrics

Survey Preferences

Most of all: statistically-
significant improvements!

» Businesses

Click-through rate
Conversion rate
Lift

Customer return and
retention rates

Time-on-site

Most of all: customer
engagement, retention,
and revenue
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Some challenges in usefulness

» Diversity and Accuracy are trade-offs — this is a
balancing act

» Novelty is not all good — customers need to be
able to evaluate recommendations

» Personalization can also be a trade-off with
accuracy — lots of people want the most
popular stuff

» Explainability is hard — both technically and in
terms customers can understand
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And Remember ...

» Marketing is not a once-is-enough situation

* A customer may need to see the recommendation
many times before reacting to it (yet does not
want to feel “nagged” about it).

* The goal is usually not simply to sell the
recommended item

* Engage the customer in a deeper relationship
* Lead to some form of sale, eventually
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The Metric Challenge

» Our Challenge:

* Translate user experience into something
guantitative that others can optimize for ...

* Two extremes (and lots of middle ground)
* Theory-less experimentation
— Optimize for sales in massive A/B tests

* Theory-driven (and theory-building) exploration
— Use, validate, and develop theories of user behavior
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Example: Towards Useful

» Pause here for a brief rant on the difference
between data mining and recommendation!

g[@uplens \ UNIVERSITY OF MINNESOTA



Example: Towards Useful

» Pause here for a brief rant on the difference
between data mining and recommendation!

* Thanks! | feel better now

» Looking at Diversity and Serendipity

* Even the definitions are hard:
Diversity: How different recommendations are

from each other?
Serendipity: How unexpected recommendations

are?
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Diversity and Serendipity

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. Proc. WWW '05.
Komal Kapoor, Vikas Kumar, Loren Terveen, Joseph A. Konstan, and Paul Schrater.
2015. "l like to explore sometimes": Adapting to Dynamic User Novelty
Preferences. Proc. RecSys '15.

» Early work: confirmed intuition that
diversification can add value even when
decreasing accuracy

» Recent work by Kapoor/Kumar shows
temporal changes in novelty-seeking among
users
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F. Maxwell Harper, Funing Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang, and
Loren Terveen. 2015. Putting Users in Control of their Recommendations. Proc.

RecSys '15.
Michael D. Ekstrand, Daniel Kluver, F. Maxwell Harper, and Joseph A. Konstan.

2015. Letting Users Choose Recommender Algorithms: An Experimental Study.
Proc. RecSys '15.

» We've started giving users greater control over
their recommendation algorithms ....

greuplens | UNIVERSITY OF MINNESOTA




But Anchored in Understanding How
User’s See Recommendations

Michael D. Ekstrand, F. Maxwell Harper, Martijn C. Willemsen, and Joseph A.
Konstan. 2014. User perception of differences in recommender algorithms.
In Proc. RecSys '14.

» Virtual lab experiment to explore user
perception of recommendations, varying
algorithms and comparing perceptions with
analytic metrics

* Found that users overall prefer less novelty but
more diversity.
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Next Steps: Psych + Temporal

» Raghav Karumur carried out studies on links
between Big-5 personality and user activity
(UMAP 2016) and content preferences (RecSys
2016).

» Komal Kapoor and Vikas Kumar examined
temporal changes in novelty preferences in
music listening (RecSys 2015)
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Example: Re-Thinking Top-n

Qian Zhao, Gedaminas Adomavicius, F. Maxwell Harper, Martijn Willemsen, and
Joseph A. Konstan. 2017. Toward Better Interactions in Recommender Systems:
Cycling and Serpentining Approaches for Top-N Item Lists. Proc CSCW ‘17.

» Challenge two assumptions of top-n
recommendation lists:

* That we should always start at the top
* That we should go in order from top to bottom
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15t Visit

MovieLens recommends these movies

top picks

view: 28 = filters: rated movies: hide ~ more v
The Avengers X % Skyfall X % BigHero6 X % DieHard I x
2012|PG-13/ 143 min 2012|PG-13/ 143 min 2014+ 102 min 1988[R] 131 min

; W)
N ; 3' J

] ‘k.-l

ik
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2nd Visit

MovieLens recommends these movies

top picks

view: 28 = filters: rated movies: hide ~ more v
The Avengers X % Skyfall X % BigHero6 X % DieHard I x
2012|PG-13/ 143 min 2012|PG-13/ 143 min 2014+ 102 min 1988[R] 131 min

; W)
N ; 3' J

] ‘k.-l

ik
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3rd .. Visit

MovieLens recommends these movies

top picks

view: 28 = filters: rated movies: hide ~ more v
The Avengers X % Skyfall X % BigHero6 X % DieHard I x
2012|PG-13/ 143 min 2012|PG-13/ 143 min 2014+ 102 min 1988[R] 131 min

; W)
N ; 3' J

] ‘k.-l

ik
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Further exploration
|

worse quality/experience
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15t Page

MovieLens recommends these movies

top picks

found 42508 movies. | show search tools

AR R R K | The Avengers 2012 PG-13 1430Q 13,463 1Y
) o ¢ & & AL 2012 PG-13 1430 7,632%¢
KRR KK | sigHeros 2014 1020 7,651 %
WA KRR W | pieHard 1988 R 1310 36,8141y
****‘* Despicable Me 2010 PG 950 7,2181r
AR KRR K | The imitation Game 2014 PG-13 1130@ 11,1001y
W W W W | The Dark knight Rises 2012 PG-13 1650@ 14,545+1¢
AR R R R | *x-Men: Days of Future Past 2014 PG-13 1310 6,522
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5th Page

MovieLens recommends these movies

top picks

found 42508 movies. = show search tools

) o & & Kiki's Delivery Service 1989 G 1030 3,769%
) & 6 & ¢ Sense and Sensibility 1995 PG 1360 24,159 %
) & & & ¢ La Jetée 1962 280 1053%
) & 6 & ¢ A Beautiful Mind 2001 PG-13 1350 29,708 %
) & 6 & ¢ Frozen Planet 2011 31920 278+
) & & & ¢ The Grapes of Wrath 1940 NR 1290 4,006 %
¥ ¥r i iy Being There 1979 PG 1300 7,707
) & & & ¢ Senna 2010 PG-13 106© 1,421%
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10t ... Page

MovielLens recommends these movies

top picks

Found 1087 movies.  show search tools

*** The Mummy: Tomb of the Dragon Emperor 2008 PG-13 112@ 1,2781¢
*** A Good Day to Die Hard 2013 R 98 @ 857 vr
*** G.l. Joe: Retaliation 2013 PG-13 1100 702 ¥
*** Rambo: First Blood Part Il 1985 R 96® 57731y
*** Snakes on a Plane 2006 R 105@ 2,266 ¢
*** Teenage Mutant Ninja Turtles 2014 PG-13 101® 725y
*** Abraham Lincoln: Vampire Hunter 2012 R 24 0@ 836
*** The Tuxedo 2002 PG-13 98@® 2,057 yr
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Excitement

Purple Rain
When Doves Cry

Willing and Able

n Sand

I O

Walk

Show Time/Further Exploration
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Experimenting with:
Cycling and Serpentining

» Cycling demotes items that have been viewed
several (3+) times, exposing fresher
recommendations.

» Serpentining spreads top recommended items
across several pages, offering high-quality
items on each page as a user continues to
explore.
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Cycling

M1 5.0
M2 4.9
M3 4.6 M1 5.0 3
M4 4.0 M2 4.9 3
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Cycling

M1 5.0 M3 4.6 0
M2 4.9 M4 4.0 0
M3 4.6 M1 5.0 3
M4 4.0 M2 4.9 3
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Serpentining

M2 49 / M3 48
p. 1 — —p.1
M3 4.8 M5 4.6
— M4 47 / M7 4.4
M5 4.6 B
M6 4.5
p.2— — .2
M7 4.4

M8 4.3
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Serpentining

M2 4.9 Ve s
p.1— — p.1
M3 4.8 o Py
— M 4.7 M7 a4
. M5 4.6 M2 49
M6 4.5 Ma P
p. 2— — p.2
M7 4.4 M e
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No Cycling Within-session Between-session
Cycling Cycling

No Serpentining control condition opt out rate: +
#page views: + #page views: +
#interested: + #interested: +

interested rate: +

accuracy: - accuracy: -
familiarity: - confusion: +
usefulness: - change: +
change: +
freshness: +
Serpentining #page views: + too complicated manipulation

#interested: + no interesting sig. results

accuracy: - see the paper for details

familiarity: -

usefulness: -

Only significant results are shown.
Italic: objective metrics; Non-italic: subjective metrics
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Example: Exploration

Taavi Taijala, Martijn C. Willemsen, and Joseph A. Konstan. MovieExplorer:

Building an Interactive Exploration Tool from Ratings and Latent Taste Spaces.
Proc. ACM SAC 2018 pp. 1383-1392.

» Can we better serve users by not

recommending but rather letting them
explore?

° How?

 For what tasks?
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o0® < | movielens.org & (4] ] [l

Done = Instructions movielens ) Start Over

MovieExplorer

Current Round

s‘.

Done Submit and go to next round <
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0@ < | movielens.org

Done = Instructions movielens

MovieExplorer

Current Round

The Professional X Apollo13 K Prime Suspect K | | The Internet's Ow
1981 « 108 min 2014 105 min

More Less More Less More Less More
like this Like this like this like this like this like this like this

en X || Shrek X
2004 + 132 min 2001 90 min 2004 = 58 min

age
@@7 e m/
Heave

[ 3
More Less More Less More Less More
like this like this like this like this like this like this like this
Done
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0@ < | movielens.org

Done = Instructions movielens

MovieExplorer

Current Round

The Professional X Apollo13 K Prime Suspect K | | The Internet's Ow
1981 « 108 min 2014 105 min

More Less
like this Like this il like this

en X || Shrek X
2004 + 132 min 2001 90 min 2004 = 58 min

age
@@7 e m/
Heave

[ 3
More Less More Less More Less More
like this like this like this like this like this like this like this
Done

*D Start Over

More Less
like this like this
Citizen X ) §

1995 + 105 min

More Less
like this like this
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Casablanca R AsltisinHeaven J  Shrek i
1942 + 102 min 2004 + 132 min 2001 PG| 90 min

Apollo 13 |
1995 « 140 min

T
L

WQ t
(ﬁa&mlﬁ

Heave

Current Round

Done Submit and go to next round <
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Apollo 13 b
1995 « 140 min

Casablanca K AsltisinHeaven X Shrek |

1942 + 102 min 2004 + 132 min 2001 [FG] 90 min

%

@% .e/m :/;z/
Heave|

3

b
Current Round
Saving Private Ryar X TheHuntforRedC XK | Apollo 13:Tot K | The Civil War X | Lincoln X
1998 [7] 169 min 1990 PG| 134 min 1994 + 82 min 1990 + 680 min

More Less More Less More Less More Less More Less
like this like this like this like this like this like this like this like this like this like this

The Intouchab
2011 [r] 112 min

are inLov: X | |Toy Story 2 X | Rudy K | |It'sa Wc u

1999 692 min 1993 PG| 114 min 1946 [nr] 130 min

More Less More Less More Less More Less More Less
like this Like this like this like this like this like this like this like this like this like this

Done
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Apollo 13 b
1995 « 140 min

Casablanca R AsitisinHeaven X | Shrek 3
1942 + 102 min 2004 + 132 min 2001 [FG] 90 min

| Tleldiisgse
- | SHIREK
X ‘ L
@%Mﬂ}}fz)
Heave
b
Current Round
Saving Private Ryar X TheHuntforRedC XK | Apollo 13:Tot K | The Civil War X | Lincoln X
1998 [7] 169 min 1990 PG| 134 min 1994 + 82 min 1990 + 680 min

More Less More Less

Less Less

like this like this like this like this like this like this
The Intouchab K | Shakespeare inLov: X Toy Story 2 X Rudy K | |It'sa Wc Fu ) §
2011 [r] 112 min 12 1999 692 min 1993 PG| 114 min 1946 [nr] 130 min

More Less More Less More Less More Less
like this Like this like this like this like this like this like this like this like this
Done
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The Hunt for Red X | Lincoln K Saving Private Ry 3

1990 [PG] 134 min 2012 [PG-13] 149 min 1998[R] 169 min

Toy Story 2 X
1999[c]92 min

Current Round

Fe: )
g 5

Done mﬁaﬂd gotonextr
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ncoln b |
2012 |PG-13| 149 min

1998[R] 169 min

1983 [FG| 193 min 1993[r] 195 min 2000 [R] 155 min 2001 « 705 min
THE
RIGHT

STUEE

o the futiwre Began.

More Less More Less More Less More Less More Less
like this like this like this like this like this like this like this like this like this like this

ot Games 4

e If You Car R | St

2002 [PG-13] 141 min 2009 [PG13] 127 min i 1992 [R] 117 min

More Less More Less More Less More Less More Less
like this Like this like this Like this like this Like this like this Like this like this Like this

Done
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Task Usefulness

1. Find a movie to see for yourself

2. Find a movie to see with others

3. Browse or explore movies

4. Build a list of movies for the future

5. Stay informed about new releases

6. Find different or eclectic movies
to explore new tastes

7. Find movies to rate

} ] | |
20% 40% 60% 80%

B Very Moderately Slightly B Not At All Don't Know
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Task Preference Net Task Preference
} } 1] } }

1. Find a movie to see for yourself |-

1 1
4. Build a list of movies for the future | : : :
5. Stay informed about new releases | - _ 4 F _ =
6. Find different or eclectic movies | _ -
to explore new tastes ! : : :
] i ]

i

! !
40% 20% 0% 20% 40% 60% 0% 20%

i

B Strong New B Slight New Don't Know Slight Existing M Strong Existing
MovieExplorer Tool MovieLens Interface
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Why | Both Hate and Love
Machine Learning

» Hate » Love
* Too often solving the * When solving the right
wrong problem, problem ...
efficiently, and at scale! * Inherent appeal of
* The easier it is to solve having some natural,
the wrong problem, the underlying structure
more we do it! * Potential to build it

whatever it is that we
can measure
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Take-Away Messages

1. Recommender Systems are not missing data
problems; they are challenges in being
useful.

2. Algorithms don’t figure out the right problem
to solve ...

3. Need a bridge between human studies and
efficient computation ...

4. Metrics are one useful bridge ...
5. Studies -> Metrics -> Algorithms
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Joseph A. Konstan

konstan@umn.edu

QUESTIONS
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The Learning Continues...

TechTalk Discourse Forum: https://on.acm.org

TechTalk Inquiries: learning@acm.org

Learning Center & TechTalk Archives: https://learning.acm.org

Professional Ethics: https://ethics.acm.org

Queue Magazine: https://queue.acm.org



https://on.acm.org/
mailto:learning@acm.org
https://learning.acm.org/
https://ethics.acm.org/
https://queue.acm.org/
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