

"Recommender Systems: Beyond Machine Learning" Joseph A. Konstan

Twitter Hashtag: #ACMLearning

Tweet questions & comments to: @ACMeducation

Post-Talk Discourse: <u>https://on.acm.org</u>

Additional Info:

- Talk begins at the top of the hour and lasts 60 minutes
- On the bottom panel you'll find a number of widgets, including Twitter and Sharing apps
- For volume control, use your master volume controls and try headphones if too low
- If you are experiencing any issues, try refreshing or relaunching your web browser page
- At the end of the presentation, you will help us out if you take the experience survey
- This session is being recorded and will be archived for on-demand viewing. You'll receive an email in the next day or two when it's ready.

Recommender Systems: Beyond Machine Learning

Speaker: Joseph A. Konstan

Moderator: Bart Knijnenburg

ACM Highlights

For Scientists, Programmers, Designers, and Managers:

- Learning Center https://learning.acm.org
 - View past TechTalks & Podcasts with top inventors, innovators, entrepreneurs, and award winners
 - Access to O'Reilly Learning Platform technical books, video courses, tutorials & case studies
 - Access to Skillsoft Training & ScienceDirect vendor certification prep, technical books & courses
- Ethical Responsibility <u>https://ethics.acm.org</u>

By the Numbers

- 2,200,000+ content readers
- 1,800,000+ DL research citations
- \$1,000,000 Turing Award prize
- 100,000 global members
- 1160+ Fellows
- 700+ chapters globally
- 170+ yearly conferences globally
- 100+ yearly awards
- 70+ Turing Award Laureates

Popular Publications & Research Papers

- Communications of the ACM <u>https://cacm.acm.org</u>
- Queue Magazine <u>https://queue.acm.org</u>
- Digital Library <u>https://dl.acm.org</u>

Major Conferences, Events, & Recognition

- <u>https://www.acm.org/conferences</u>
- <u>https://www.acm.org/chapters</u>
- <u>https://awards.acm.org</u>

"Recommender Systems: Beyond Machine Learning" Joseph A. Konstan

Twitter Hashtag: #ACMLearning

Tweet questions & comments to: @ACMeducation

Post-Talk Discourse: <u>https://on.acm.org</u>

Additional Info:

- Talk begins at the top of the hour and lasts 60 minutes
- On the bottom panel you'll find a number of widgets, including Twitter and Sharing apps
- For volume control, use your master volume controls and try headphones if too low
- If you are experiencing any issues, try refreshing or relaunching your web browser page
- At the end of the presentation, you will help us out if you take the experience survey
- This session is being recorded and will be archived for on-demand viewing. You'll receive an email in the next day or two when it's ready.

Recommender Systems: Beyond Machine Learning

Joseph A. Konstan <u>konstan@umn.edu</u> www.grouplens.org

What are Recommender Systems?

- » Tools that help narrow an otherwise overwhelming set of choices
 - Filters (categorize, select, or remove)
 - Common example, e-mail filters
 - Can have filters sift out inappropriate products
 - Recommendations
 - Often "product placement" or top-n lists
 - Direct to customer or via sales agent
 - Predicted values (e.g., hotel/restaurant stars)

Level of Personalization

- » Generic Recommendation
 - Everyone receives the same; e.g. top sellers
- » Demographic Personalization
 - Targeted to people based on categories
- » Ephemeral Personalization (Context)
 - Matched to current activity (people who like ..)
- » Persistent Personalization (Profiles)
 - Matched to entire profile of activity/info

Recommendation Approaches

- » Manual (marketer) recommendations
 - "Sell the fish!"
- » Simple summary statistics
 - Four-star hotel or cruise
- » Product Associations
 - What items "go together"
- » Content-based techniques
 - Learning from single-user profiles
- » Collaborative techniques
 - Learning from other users' profiles too
- » All of the above ... advanced ML techniques

Understanding the Computation

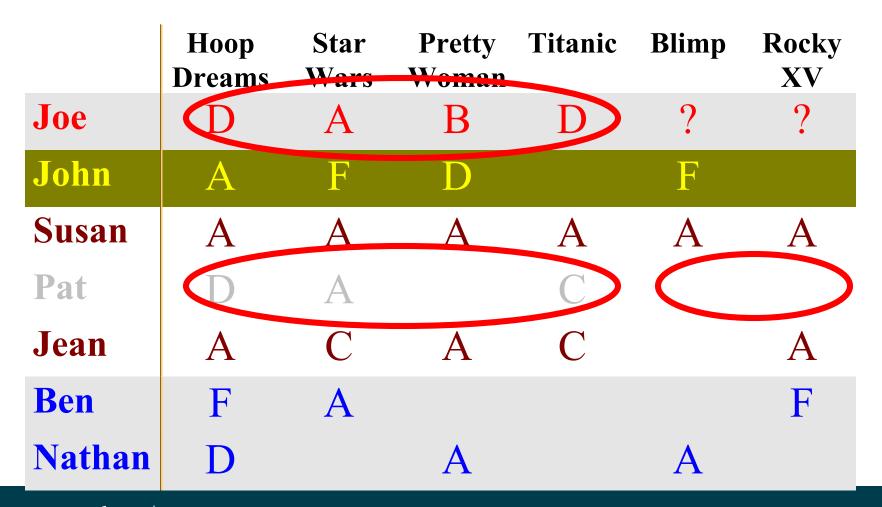
	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	?	?
John	A	F	D		F	
Susan	A	А	A	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	Ð	A	В	D	?	?
John	А	F	D		F	
Susan	A	A	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	A				F
Nathan	D		А		Α	

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	(D)	Α	B	D	?	?
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		А
Ben	F	Α				F
Nathan	D		A		Α	

GROUDIENS | UNIVERSITY OF MINNESOTA

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe		A	B	D	?	?
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	



	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	(?)	?
John	A	F	D		F	
Susan	A	А	А	А	A	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		A	

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	?	(?)
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	А	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

Understanding the Computation

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	?	?
John	A	F	D		F	
Susan	A	А	A	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	A	B	D	(?)	?
John	A	F	D		F	
Susan	A	А	А	А	Α	A
Pat	D	Α		С		
Jean	A	С	Α	С		A
Ben	F	Α				F
Nathan	D		А		A	

GROUDIENS | UNIVERSITY OF MINNESOTA

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	(A)	B	D	(?)	?
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	?	(?)
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		A		Α	

	Hoop Drean		Pretty Woma		Blimp	Rocky XV
Joe	D	Α	B	D	?	(?)
John	Â	F	D		F	
Susan	Α	А	Α	А	А	A
Pat	D	A		С		
Jean	Α	С	Α	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

GLOUDIENS UNIVERSITY OF MINNESOTA

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	B	D	?	(?)
John	A	F	D		F	
Susan	A	А	А	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

But Today's Solutions Have Evolved

GLOUDIENS | UNIVERSITY OF MINNESOTA

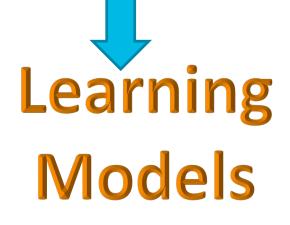
Understanding the Computation

	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	Α	В	D	?	?
John	A	F	D		F	
Susan	A	А	A	А	А	A
Pat	D	A		С		
Jean	A	С	A	С		A
Ben	F	Α				F
Nathan	D		Α		Α	

Modern Recommender Systems

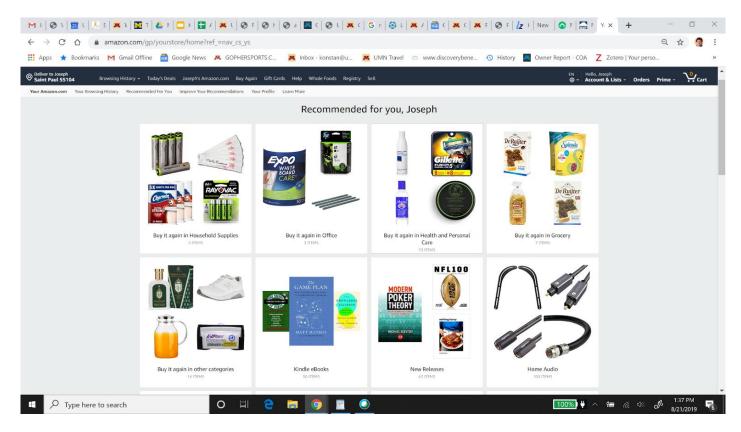
	Hoop Dreams	Star Wars	Pretty Woman	Titanic	Blimp	Rocky XV
Joe	D	А	В	D	?	?
John	А	F	D		F	
Susan	A	А	А	А	А	А
Pat	D	А		С		
Jean	A	С	А	С		А
Ben	F	Α				F
Nathan	D		А		А	

Latent Factor Models

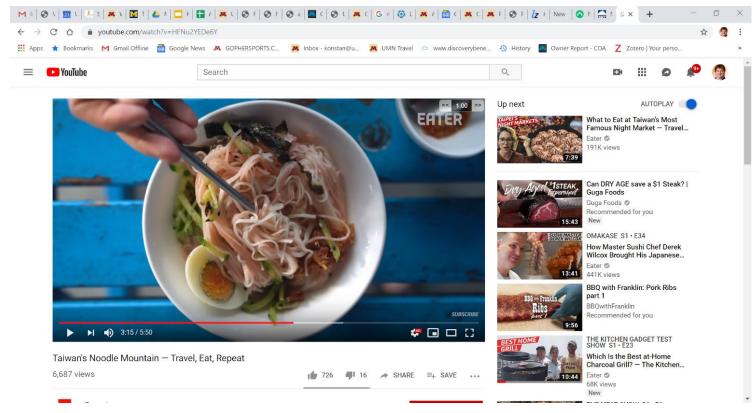


So much technology, yet ...

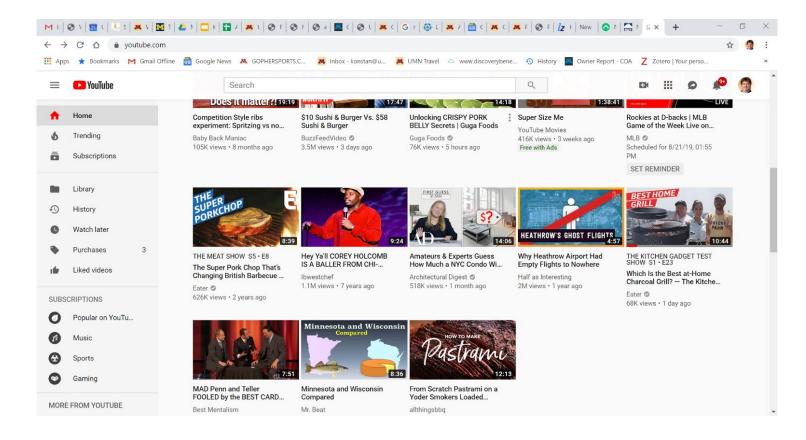
» Lousy recommendations are everywhere!



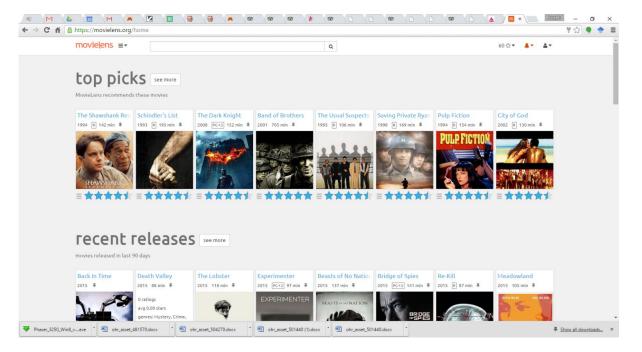
GROUPLENS | UNIVERSITY OF MINNESOTA



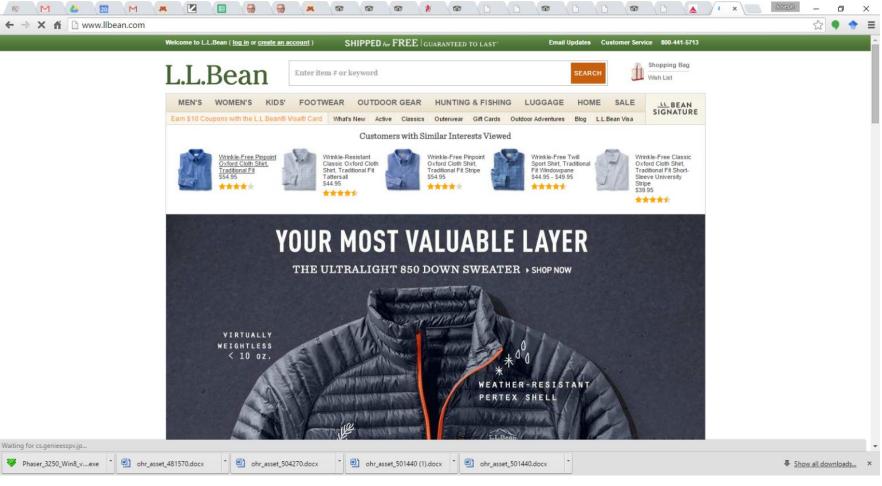
GROUPLENS | UNIVERSITY OF MINNESOTA



GLOUDIENS | UNIVERSITY OF MINNESOTA



GROUPLENS | UNIVERSITY OF MINNESOTA



GROUPLENS | UNIVERSITY OF MINNESOTA

What makes recommendations useful?

- » Accuracy likelihood of adoption
- » Novelty not something they would have found or adopted anyway
- » Diversity not all recommended the same
- » Personalization feeling that recommendation feels specific to recipient
- » Explainability can fit a story to the recommendation
- » Business value don't recommend what you don't want to offer/sell

A Bit of RecSys Metrics History

- » Researchers
 - MAE, MSE, RMSE
 - Correlation (rate/pred)
 - Error Rates
 - Retention Rates
 - Top-k Metrics
 - Survey Preferences
 - Most of all: statisticallysignificant improvements!

- » Businesses
 - Click-through rate
 - Conversion rate
 - Lift
 - Customer return and retention rates
 - Time-on-site
 - Most of all: customer engagement, retention, and revenue

Some challenges in usefulness

- » Diversity and Accuracy are trade-offs this is a balancing act
- » Novelty is not all good customers need to be able to evaluate recommendations
- » Personalization can also be a trade-off with accuracy – lots of people want the most popular stuff
- » Explainability is hard both technically and in terms customers can understand

And Remember ...

» Marketing is not a once-is-enough situation

- A customer may need to see the recommendation many times before reacting to it (yet does not want to feel "nagged" about it).
- The goal is usually not simply to sell the recommended item
 - Engage the customer in a deeper relationship
 - Lead to some form of sale, eventually

The Metric Challenge

- » Our Challenge:
 - Translate user experience into something quantitative that others can optimize for ...
 - Two extremes (and lots of middle ground)
 - Theory-less experimentation
 - Optimize for sales in massive A/B tests
 - Theory-driven (and theory-building) exploration
 - Use, validate, and develop theories of user behavior

Example: Towards Useful

» Pause here for a brief rant on the difference between data mining and recommendation!

Example: Towards Useful

- » Pause here for a brief rant on the difference between data mining and recommendation!
 - Thanks! I feel better now
- » Looking at Diversity and Serendipity
 - Even the definitions are hard: *Diversity*: How different recommendations are from each other? *Serendipity*: How unexpected recommendations are?

Diversity and Serendipity

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommendation lists through topic diversification. *Proc. WWW '05*. Komal Kapoor, Vikas Kumar, Loren Terveen, Joseph A. Konstan, and Paul Schrater. 2015. "I like to explore sometimes": Adapting to Dynamic User Novelty Preferences. *Proc. RecSys '15*.

- » Early work: confirmed intuition that diversification can add value even when decreasing accuracy
- » Recent work by Kapoor/Kumar shows temporal changes in novelty-seeking among users

Giving Users Control ...

F. Maxwell Harper, Funing Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang, and Loren Terveen. 2015. Putting Users in Control of their Recommendations. *Proc. RecSys '15*.

Michael D. Ekstrand, Daniel Kluver, F. Maxwell Harper, and Joseph A. Konstan. 2015. Letting Users Choose Recommender Algorithms: An Experimental Study. *Proc. RecSys '15*.

» We've started giving users greater control over their recommendation algorithms

But Anchored in Understanding How User's See Recommendations

Michael D. Ekstrand, F. Maxwell Harper, Martijn C. Willemsen, and Joseph A. Konstan. 2014. User perception of differences in recommender algorithms. In *Proc. RecSys* '14.

- » Virtual lab experiment to explore user perception of recommendations, varying algorithms and comparing perceptions with analytic metrics
 - Found that users overall prefer less novelty but more diversity.

Next Steps: Psych + Temporal

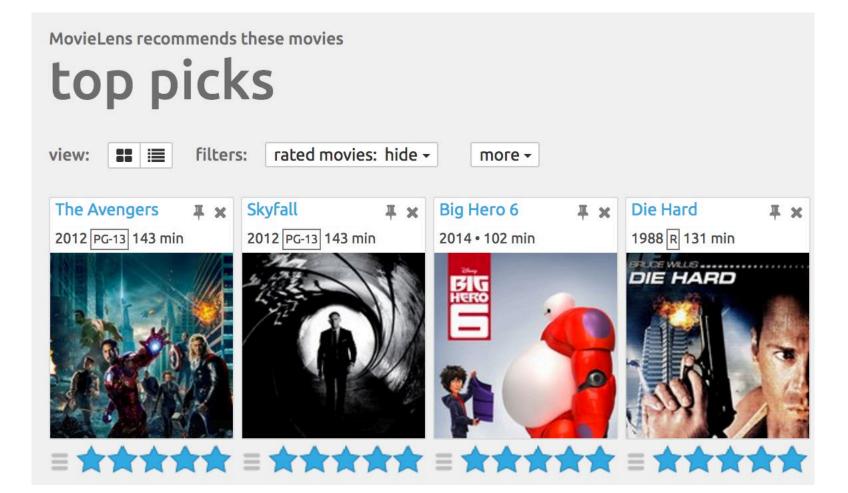
» Raghav Karumur carried out studies on links between Big-5 personality and user activity (UMAP 2016) and content preferences (RecSys 2016).

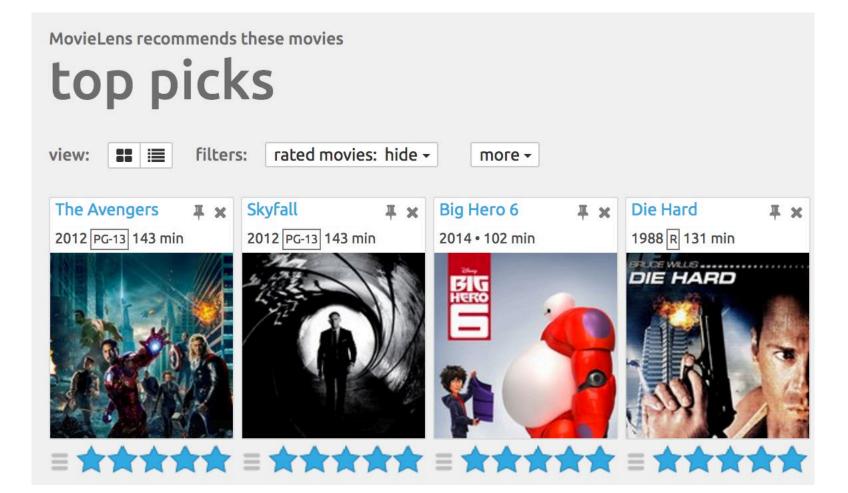
» Komal Kapoor and Vikas Kumar examined temporal changes in novelty preferences in music listening (RecSys 2015)

Example: Re-Thinking Top-n

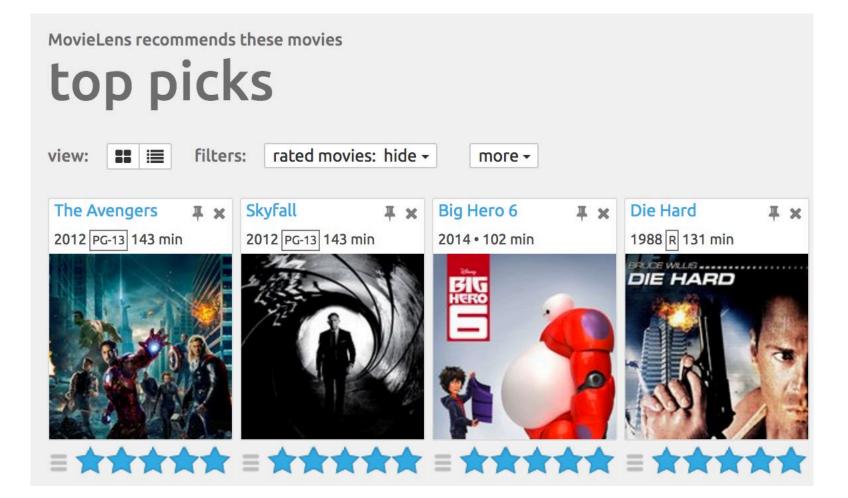
Qian Zhao, Gedaminas Adomavicius, F. Maxwell Harper, Martijn Willemsen, and Joseph A. Konstan. 2017. Toward Better Interactions in Recommender Systems: Cycling and Serpentining Approaches for Top-N Item Lists. *Proc CSCW '17*.

- » Challenge two assumptions of top-n recommendation lists:
 - That we should always start at the top
 - That we should go in order from top to bottom





3rd ... Visit



1st Page

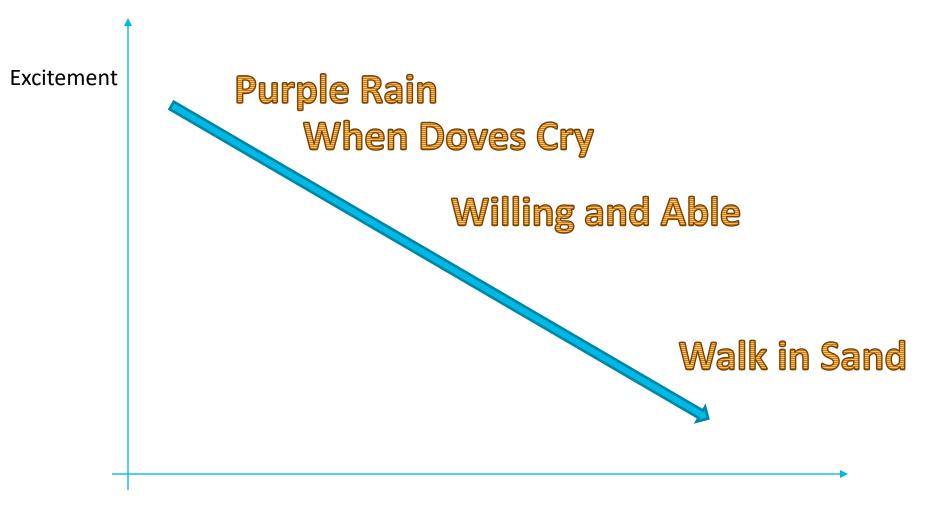
MovieLens recommends to top pick found 42508 movies. sh				
=****	The Avengers	2012	PG-13 143 O	13,463 ☆
***	Skyfall	2012	PG-13 143 O	<mark>7,632</mark> ☆
***	Big Hero 6	2014	102 🥑	<mark>7,651</mark> ☆
	Die Hard	1988	R 131 O	36,814 ☆
= ****	Despicable Me	2010	PG 95 📀	7,218 ☆
*** *	The Imitation Game	2014	PG-13 113 O	11,100 ☆
= * ****	The Dark Knight Rises	2012	PG-13 165 @	14,545 ☆
	X-Men: Days of Future Past	2014	PG-13 131 O	6,522 ☆

5th Page

MovieLens recommends to top pick found 42508 movies. sh					
= *** *	Kiki's Delivery Service	1989	G	103 🕑	<mark>3,769</mark> ☆
	Sense and Sensibility	1995	PG	136 🕑	24,159 ☆
■★★★★ ★	La Jetée	1962		28 🕗	1,053 ☆
■★★★★ ★	A Beautiful Mind	2001	PG-13	135 O	29,708 ☆
■★★★★ ★	Frozen Planet	2011		392 🕑	278 ☆
■★★★★ ★	The Grapes of Wrath	1940	NR	129 🕑	4,006 ☆
■★★★★ ★	Being There	1979	PG	130 🕑	7,170 ☆
= *** *	Senna	2010	PG-13	106 Ø	1,421 ☆

10th ... Page

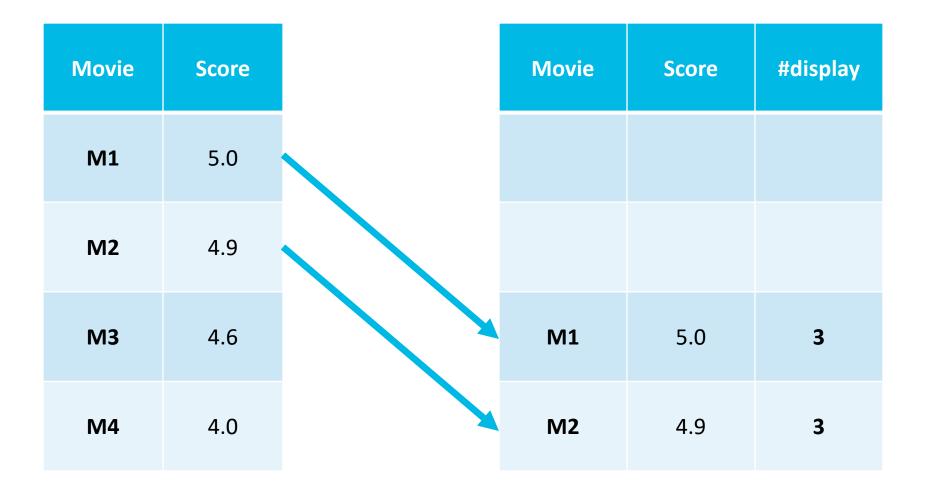
MovieLens recommends the top pick found 1087 movies. show					
	The Mummy: Tomb of the Dragon Emperor	2008	PG-13 1	12 🕑	1,278 ☆
*** **	A Good Day to Die Hard	2013	R	98 O	<mark>857</mark> ☆
****	G.I. Joe: Retaliation	2013	PG-13 1	10 ②	702 ☆
	Rambo: First Blood Part II	1985	R	96 🕑	5,773 ☆
	Snakes on a Plane	2006	R 1	05 O	2,266 ☆
	Teenage Mutant Ninja Turtles	2014	PG-13 1	01 🕑	725 ☆
	Abraham Lincoln: Vampire Hunter	2012	R	94 🕑	836 ☆
= ****	The Tuxedo	2002	PG-13	98 @	2,057 ☆



Show Time/Further Exploration

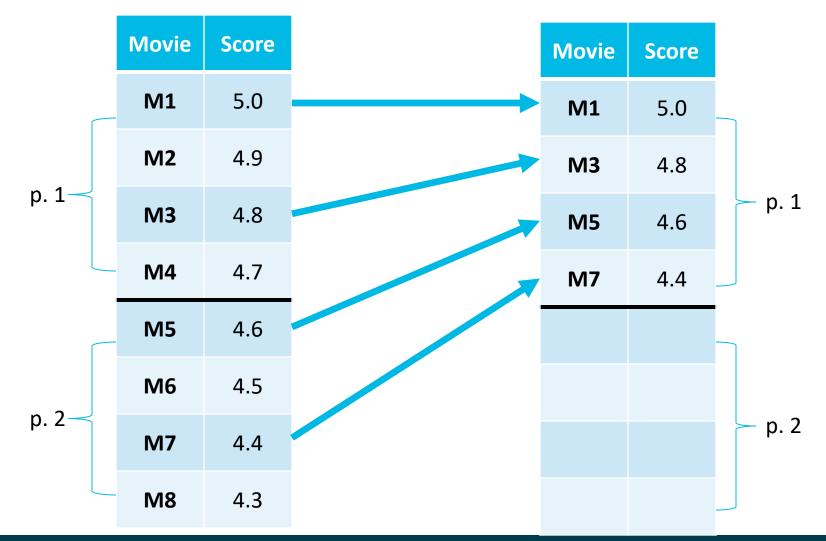
Experimenting with: Cycling and Serpentining

- » Cycling demotes items that have been viewed several (3+) times, exposing fresher recommendations.
- » Serpentining spreads top recommended items across several pages, offering high-quality items on each page as a user continues to explore.

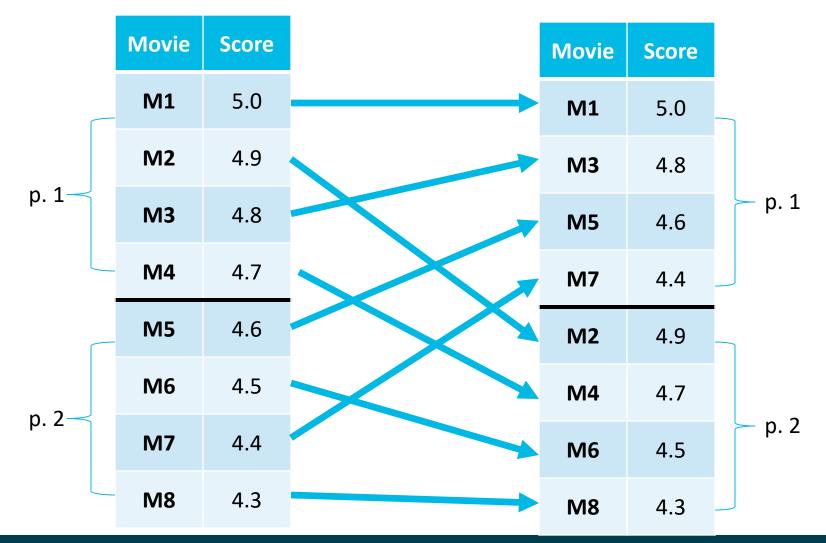


Movie	Score	Movie	Score	#display
M1	5.0	М3	4.6	0
M2	4.9	M4	4.0	0
M3	4.6	M1	5.0	3
M4	4.0	M2	4.9	3

Serpentining



Serpentining



	No Cycling	Within-session Cycling	Between-session Cycling
No Serpentining	control condition	opt out rate: + #page views: + #interested: + interested rate: + accuracy: - familiarity: - usefulness: - change: + freshness: +	<pre>#page views: + #interested: + accuracy: - confusion: + change: +</pre>
Serpentining	<pre>#page views: + #interested: + accuracy: - familiarity: - usefulness: -</pre>	too complicated mar no interesting sig. res see the paper for det	sults

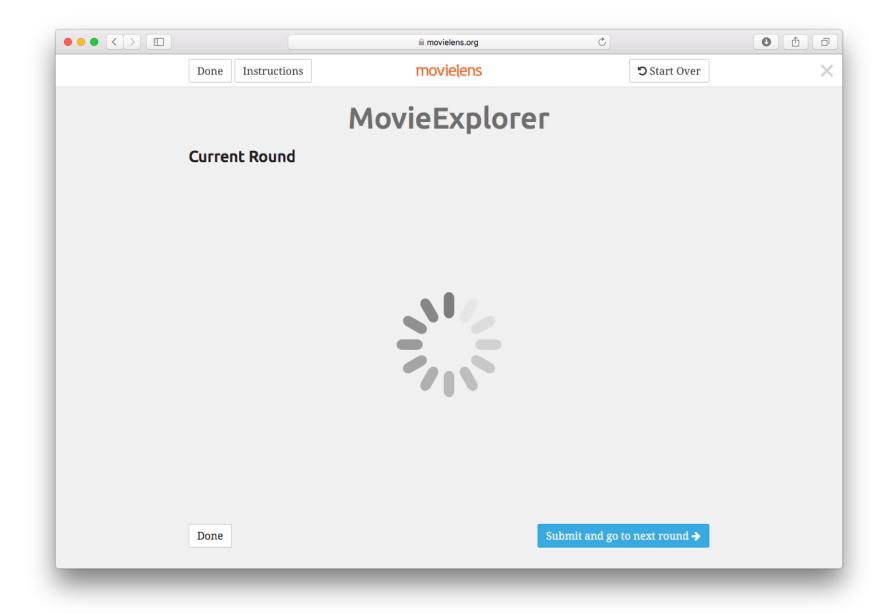
Only significant results are shown.

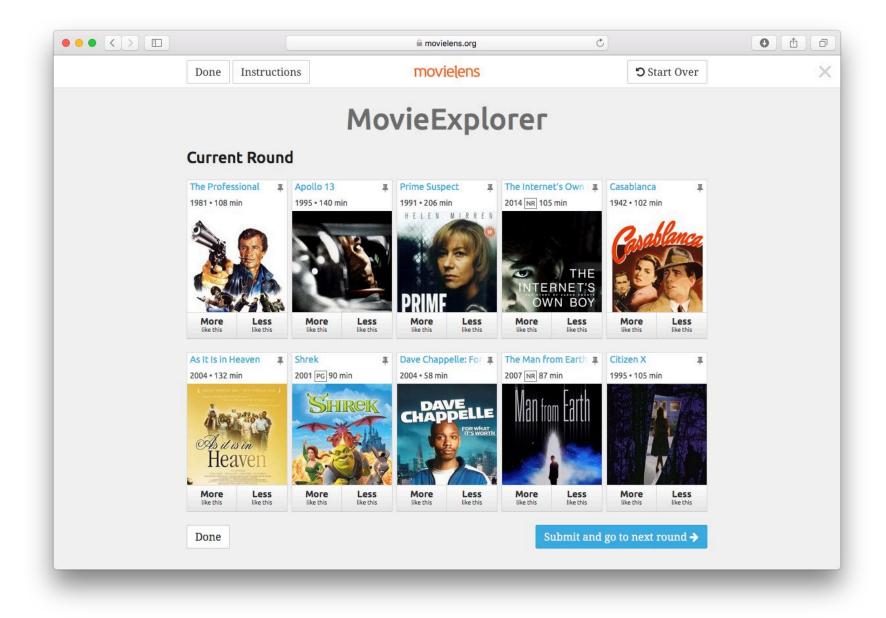
Italic: objective metrics; Non-italic: subjective metrics

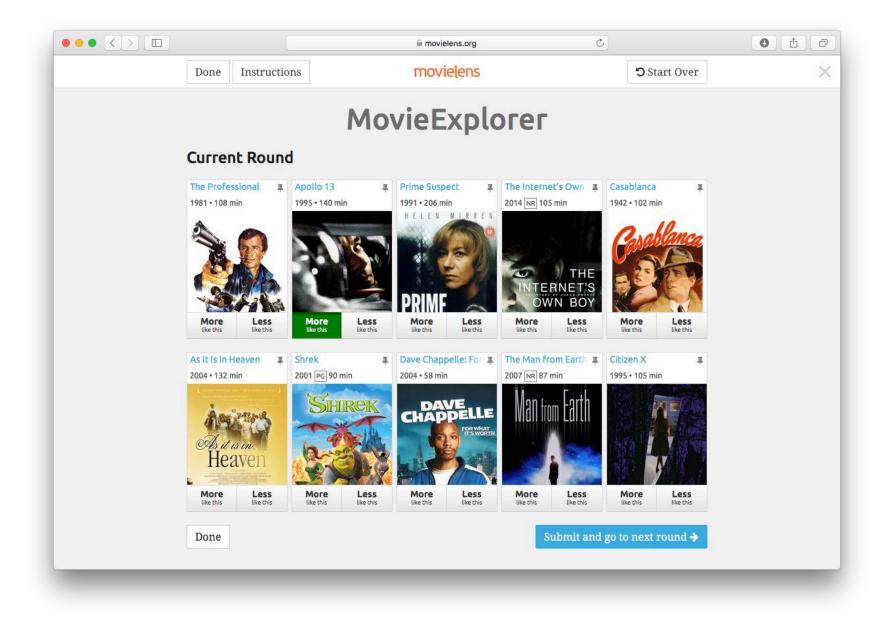
Example: Exploration

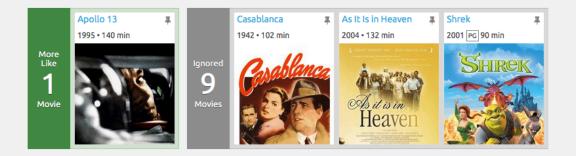
Taavi Taijala, Martijn C. Willemsen, and Joseph A. Konstan. MovieExplorer: Building an Interactive Exploration Tool from Ratings and Latent Taste Spaces. *Proc. ACM SAC 2018 pp. 1383-1392.*

- » Can we better serve users by not recommending but rather letting them explore?
 - How?
 - For what tasks?



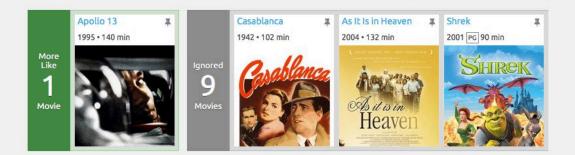


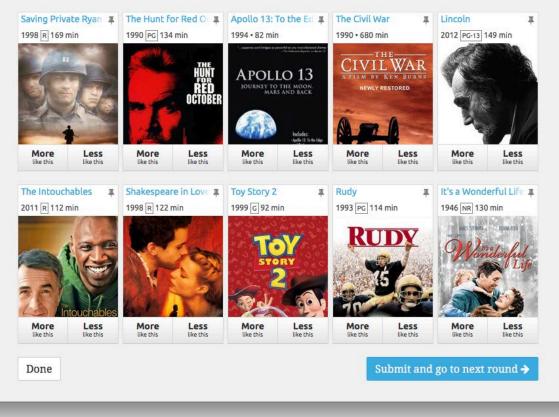


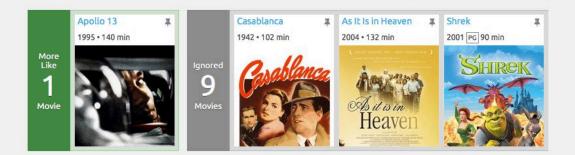


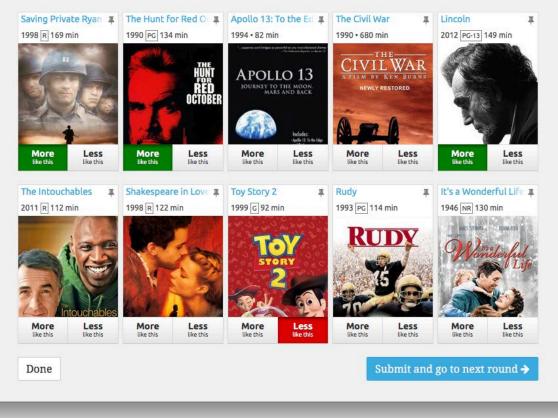
Submit and go to next round >

Done





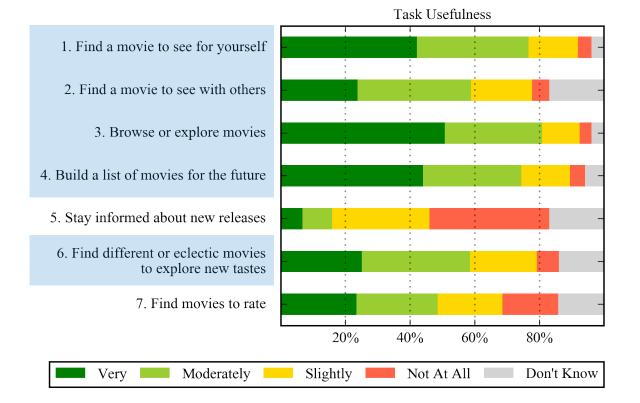


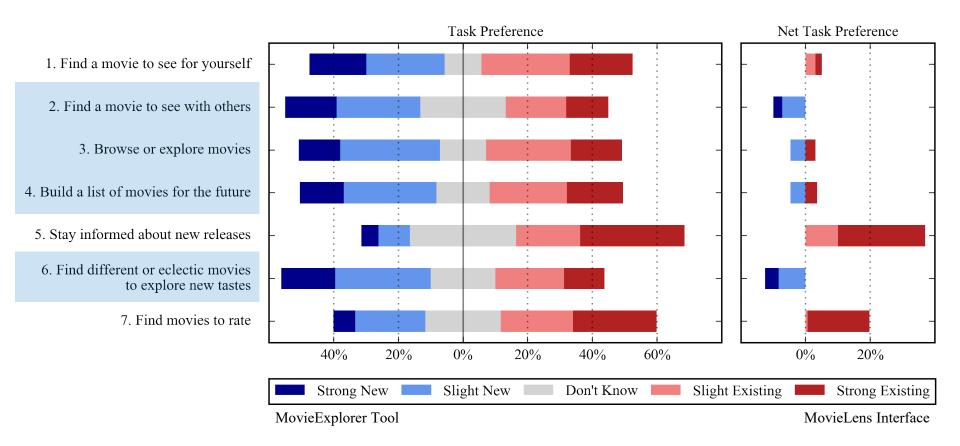


Submit and go to next round >

Done

1983 PG 193 min	#	Schindler's I 1993 R 195 m		Gladiator 2000 R 155 mi	∓ n	Band of Bro 2001 • 705 m	100000	Bridge of S 2015 PG-13 1	
THE RIGHT STUFF		á		1		12 and 1			Se.
How the future began.	60			R			4 2		
補給的				1	200		TIS		
More Le	ess	More	Less	More	1	More	Less	More	Less
like this like	e this	like this	Less like this	like this	Less like this	like this	like this	like this	like this
					like this	like this			
like this like Catch Me If You (2002 PG-13 141 mir	Can I	like this	like this	like this	like this	like this	like this		nes J
Catch Me If You (Can I	like this	like this	like this Field of Drea 1989 PG 107 m	like this	like this Master and	like this	Patriot Gan	nes J
Catch Me If You (Can I	like this	like this	like this Field of Drea 1989 PG 107 m	like this	like this Master and	like this	Patriot Gan	nes J
Catch Me IF You (2002 PG-13 141 mir	Can I	like this	like this	like this Field of Drea 1989 PG 107 m	like this	like this Master and	like this	Patriot Gan	nes J
Catch Me If You (Can II n	like this	like this	like this Field of Drea 1989 PG 107 m	like this	like this Master and	like this	Patriot Gan	nes J





GLOUDIENS UNIVERSITY OF MINNESOTA

Why I Both Hate and Love Machine Learning

» Hate

- Too often solving the wrong problem, efficiently, and at scale!
- The easier it is to solve the wrong problem, the more we do it!

» Love

- When solving the right problem ...
- Inherent appeal of having some natural, underlying structure
- Potential to build it whatever it is that we can measure

Take-Away Messages

- Recommender Systems are not missing data problems; they are challenges in being useful.
- 2. Algorithms don't figure out the right problem to solve ...
- 3. Need a bridge between human studies and efficient computation ...
- 4. Metrics are one useful bridge ...
- 5. Studies -> Metrics -> Algorithms

Joseph A. Konstan

konstan@umn.edu

The Learning Continues...

TechTalk Discourse Forum: <u>https://on.acm.org</u> TechTalk Inquiries: <u>learning@acm.org</u> Learning Center & TechTalk Archives: <u>https://learning.acm.org</u> Professional Ethics: <u>https://ethics.acm.org</u> Queue Magazine: <u>https://queue.acm.org</u>