
Research to Reality: Building

Production-Ready LLM Apps

Users Can Trust

Rush Shahani

CTO & Co-Founder

Persana AI (YC W23)

- CTO & Co-Founder, Persana AI (YC W23)
- AI @: LinkedIn, Element AI, Shopify
- Author of 'LLM Reliability'
- Focus: Building scalable, effective and

trustworthy AI systems

Rush Shahani
Cofounder & CTO at Persana AI

Author of LLM Reliability (Manning Publications)

bit.ly/llmreliability
Coupon - ACM45 (40% off ACM exclusive)

http://bit.ly/llmreliability

About Persana AI (YC W23)

● Our mission is to amplify GTM teams with the power of

AI Agents to convert high intent leads and automate all

manual processes.

● Intent is scattered across millions of touch-points and is

impossible to analyze manually

● Use the power of LLMs + ranking models to identify

high intent signals across all different data sources

Agenda

1. LLM Landscape & Introduction to LLM Reliability

2. Understanding Hallucinations

3. Basic & Advanced Prompting Techniques

4. RAG Architecture & Implementation

5. AI Agents Architecture

6. Agentic RAG Demo

7. Evaluating RAG & Agentic Systems

8. Bias & Ethics

9. Key Takeaways

LLM Landscape and Why Reliability?

● Rapid advancements: GPT-4, Claude, LLaMA

● Applications: Coding, customer support, research

● Production deployment of LLMs introduce critical challenges such as

hallucinations, harmful bias, performance, lack of efficiency.

“This is really a moment where productivity is no longer tied to workforce
growth, but through this intelligent technology that can be scaled without
limits.” - Marc Benioff

The Harvard Business Review estimates that almost 80% of generative AI
projects end up in failure

The AI Revolution

The Hallucination Problem

● Hallucinations: Generating fabricated or inaccurate information

What Causes Hallucinations?

● Causes:

○ Training data limitations
○ Lack of real-time retrieval
○ Overconfidence in uncertain responses

● Impact: Erodes trust and is dangerous especially for high-stakes

domains like healthcare, law

Ways to Reduce Hallucinations

● Choice of LLM reduces hallucinations (eg. GPT-4 reduces

hallucinations compared to GPT-3.5)

● Model Parameters

● Advanced Prompting techniques

● Fine-tuning can make the model grounded

● Retrieval Augmented Generation

● Agents and tools

Basic Prompting Tips to Reduce Hallucinations

● Use assertive voice if you want a model obey certain

guidelines

● Reiterate the rules at the end of the prompt

● Be descriptive and use examples (few-shot prompting)

● Add more context in the prompt and ask the model to act

as an expert for our field (eg. Act as a Expert Lawyer)

● Ask the model to substantiate its claims (Citations)

Adjusting Model Parameters

temperature=1 returns incorrect dates

Zero Shot vs. Few Shot Prompting

Chain-of-Thought Prompting

Tree of Thought Prompting

Sudoku is a perfect
example of this

Another example is a customer telling a chatbot that
his TV is malfunctioned

The LLM can evaluate 3 options:

1) Return it if its in the 30 day window
2) Manufacturer 1 year warranty if its outside of 30

day
3) Replace it for a new one if it’s within 90 days of

purchase

SelfCheckGPT

LLM As a Judge

Source: SuperAnnotate

Source: SuperAnnotate

The Problem Despite Effective Prompting

Retrieval Augmented Generation (RAG)

● Combines large language models (LLMs) with real-time information

retrieval

● Dynamically fetches context from external sources to inform

responses

● Knowledge is up-to date and grounded

● Tells the LLM to only answer the users question from the given data. If

the question cannot be reliably answered, the model should state that

it cannot answer the question

Building RAG - Step 1, Extract and Split into
Chunks

● Extract the data from the data source (eg. PDFs, Web Data,

CRM, Snowflake, etc) and convert it to raw text

● Next, split it into smaller chunks (use tools such as Langchain’s

CharacterTextSplitter)

● LLMs have a context window limit

RAG - Step 2, Embeddings

- Create embeddings of each

of the chunks (You can use

OpenAI Embeddings Ada)

- Embeddings capture the

meaning/semantics of the

text

RAG - Step 3, Store in a Vector DB

- Store the embeddings in a

vector DB (eg. Pinecone)

RAG - Step 4, Retrieval

- i) User enters their query

ii) We run an embedding search

to find the most similar

embeddings to the query

- iii) Ask the LLM to answer the

users query based on the

documents we found in step ii

Retrieval Augmented Generation

Source: AWS

Eg. Someone on a Banking
site asks the chatbot
“How do I withdraw my
money”, and the chatbot
trained on the wiki and past
conversations with support
reps answers correctly.

RAG Best Practices

Data Preparation
● Clean and preprocess data
● Remove duplicates
● Version control for corpus

Chunking Strategies
● Overlap handling
● Size optimization
● Context preservation
● Experimenting with different chunking sizes

Embedding Selection
● Model comparison
● Domain adaptation
● Cost vs. performance

RAG & Context Challenges: Lost in the Middle

● As the "Lost in the Middle" paper demonstrated (see the figure above), the effective
context length for models to retrieve and utilize information tops out around 2000 tokens

RAG Techniques to Reduce Hallucinations

Always verified & up-to-date data: Retrieval of verified data ensures factual accuracy.

Example:

● Query: "What are global temperature trends?"
● Without RAG: "Outdated Data”
● With RAG: "Global temperatures rise ~0.18°C per decade (source: IPCC)."

Metadata Filtering & Advanced RAG Techniques

1. Reducing Noise: Use semantic similarity filters to focus on relevant data.
2. Metadata Filtering: Leverage document tags to refine retrieval.
3. Hybrid Search: Combine RAG with Keyword Based Search.

Example

Query: "How do I set up international roaming on my iPhone 15 Mobile Plus plan?"

Filtered Retrieval: Only documents tagged with “iPhone 15”, "international roaming"

That way other documents tagged international roaming Android don’t get selected by semantic search even if they have a
higher match score.

Agents, agents, agents

An AI Agent is a system that is capable of autonomously

performing tasks on behalf of a user or another system.

“Agents are the new apps,” HubSpot CTO and

co-founder Dharmesh Shah

 Tons of companies including Google is reportedly working

on AI agents that can make purchases, such as booking

flights and hotels

Agentic RAG: Persana Quantum Agent Example

Quantum Agent: one of the most used Persana
features with 5M+ usages in the last 90 days

Evaluating & Monitoring RAG & Agents

- Create a test data set and with every iteration ensure your RAG

pipeline platform answers them effectively

- Monitor RAG in production with tools like Okareo, Galileo

- RAGAS Evaluation Metrics for RAG and Agents (Python package)

Source: Okareo

Source: Galileo

Source: Galileo

Agent Evaluation Framework

Comprehensive Agent Evaluation

- Beyond just skills: evaluating the complete agent pipeline

- Key areas: Router, Execution Path, and Performance

- Critical for reliable agent systems

1. Skill Selection Accuracy

 • Critical: Router's ability to choose correct function

 • Common issues: Poor prompts, unclear function descriptions

 • Metrics: Selection accuracy, handling of ambiguous queries

Agent Router Evaluation

Agent Router Evaluation
2. Parameter Extraction

 • Accurate extraction of function parameters

 • Edge case handling (e.g., order status with tracking numbers)

 • Testing overlapping parameter scenarios

 • Using LLM judges (e.g., Arize) for accuracy evaluation

Implementation Tips:

 • Regular testing with edge case, Clear function descriptions, Continuous prompt refinement

Agent Path & Performance Monitoring

1. Execution Path Evaluation

 • Track number of steps per query type

 • Monitor for loops and repetitive steps

 • Measure overall path & cost efficiency

2. Implementation Tools & Best Practices

 • Add iteration counters, Implement observability platforms (Arize AI, Galieo, Okareo)

Bias & Ethics: Our Responsibility

● The Challenge of Bias:
○ Bias in training data leads to biased outputs.
○ Disproportionate harm in sensitive domains (e.g., hiring, healthcare, criminal justice).
○ Example: A loan approval model disproportionately rejecting applicants from specific demographics.

● Why It Matters:
○ Erosion of user trust.
○ Legal and reputational risks.

● Mitigation Strategies:
○ Diverse and inclusive training data.
○ Regular audits for bias detection.
○ Incorporating fairness metrics (e.g., demographic parity).

● Role of RAG & Agents:
○ Grounded retrieval reduces bias from fabricated information.
○ Agents can be designed to flag ethically sensitive outputs.

“"AI systems are only as fair as the data they're trained on."”

Key Takeaways
● LLM Challenges: Hallucinations and bias undermine trust and

reliability.
● Mitigation Techniques: Effective prompting, RAG, and self-checking

models reduce risks.
● AI Agents: Autonomous agents are the future—when grounded and

monitored properly.
● Ethics First: Prioritize fairness, inclusivity, and transparency in AI

design.
● Continuous Evaluation: Regular monitoring & evaluations are

essential for scalable, reliable AI systems.

- Connect with me on LinkedIn
(linkedin.com/in/rusheelshahani)

- Persana AI if you are interested in
automating your sales with AI

Exclusive Manning discount to read
LLM reliability and dive deeper into these
topics with code examples
bit.ly/llmreliability
Coupon - ACM45 (40% off ACM exclusive)

Thank you for joining—together, we build the
future of AI!

http://linkedin.com/in/rusheelshahani
http://bit.ly/llmreliability

