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About Persana AI (YC W23)

● Our mission is to amplify GTM teams with the power of 

AI Agents to convert high intent leads and automate all 

manual processes. 

● Intent is scattered across millions of touch-points and is 

impossible to analyze manually

● Use the power of LLMs + ranking models to identify 

high intent signals across all different data sources



Agenda

1. LLM Landscape & Introduction to LLM Reliability

2. Understanding Hallucinations

3. Basic & Advanced Prompting Techniques

4. RAG Architecture & Implementation

5. AI Agents Architecture

6. Agentic RAG Demo

7. Evaluating RAG & Agentic Systems

8. Bias & Ethics

9. Key Takeaways



LLM Landscape and Why Reliability?

● Rapid advancements: GPT-4, Claude, LLaMA 

● Applications: Coding, customer support, research 

● Production deployment of LLMs introduce critical challenges such as 

hallucinations, harmful bias, performance, lack of efficiency.

“This is really a moment where productivity is no longer tied to workforce 
growth, but through this intelligent technology that can be scaled without 
limits.” - Marc Benioff

The Harvard Business Review estimates that almost 80% of generative AI 
projects end up in failure



The AI Revolution 



The Hallucination Problem

● Hallucinations: Generating fabricated or inaccurate information



What Causes Hallucinations?

● Causes:

○ Training data limitations
○ Lack of real-time retrieval
○ Overconfidence in uncertain responses

● Impact: Erodes trust and is dangerous especially for high-stakes 

domains like healthcare, law



Ways to Reduce Hallucinations

● Choice of LLM reduces hallucinations (eg. GPT-4 reduces 

hallucinations compared to GPT-3.5)

● Model Parameters 

● Advanced Prompting techniques 

● Fine-tuning can make the model grounded

● Retrieval Augmented Generation

● Agents and tools





Basic Prompting Tips to Reduce Hallucinations

● Use assertive voice if you want a model obey certain 

guidelines

● Reiterate the rules at the end of the prompt

● Be descriptive and use examples (few-shot prompting)

● Add more context in the prompt and ask the model to act 

as an expert for our field (eg. Act as a Expert Lawyer)

● Ask the model to substantiate its claims (Citations)



Adjusting Model Parameters

temperature=1 returns incorrect dates



Zero Shot vs. Few Shot Prompting



Chain-of-Thought Prompting



Tree of Thought Prompting

Sudoku is a perfect 
example of this

Another example is a customer telling a chatbot that 
his TV is malfunctioned

The LLM can evaluate 3 options:

1)  Return it if its in the 30 day window
2) Manufacturer 1 year warranty if its outside of 30 

day
3) Replace it for a new one if it’s within 90 days of 

purchase



SelfCheckGPT



LLM As a Judge

Source: SuperAnnotate



Source: SuperAnnotate





The Problem Despite Effective Prompting



Retrieval Augmented Generation (RAG)

● Combines large language models (LLMs) with real-time information 

retrieval

● Dynamically fetches context from external sources to inform 

responses

● Knowledge is up-to date and grounded

● Tells the LLM to only answer the users question from the given data. If 

the question cannot be reliably answered, the model should state that 

it cannot answer the question



Building RAG - Step 1, Extract and Split into 
Chunks

● Extract the data from the data source (eg. PDFs, Web Data, 

CRM, Snowflake, etc) and convert it to raw text

● Next, split it into smaller chunks (use tools such as Langchain’s 

CharacterTextSplitter)

● LLMs have a context window limit 



RAG - Step 2, Embeddings

- Create embeddings of each 

of the chunks (You can use 

OpenAI Embeddings Ada)

- Embeddings capture the 

meaning/semantics of the 

text 



RAG - Step 3, Store in a Vector DB

- Store the embeddings in a 

vector DB (eg. Pinecone)



RAG - Step 4, Retrieval

- i) User enters their query

ii) We run an embedding search 

to find the most similar 

embeddings to the query

- iii) Ask the LLM to answer the 

users query based on the 

documents we found in step ii



Retrieval Augmented Generation

Source: AWS

Eg. Someone on a Banking 
site asks the chatbot 
“How do I withdraw my 
money”, and the chatbot
trained on the wiki and past 
conversations with support 
reps answers correctly.
  



RAG Best Practices

Data Preparation
● Clean and preprocess data
● Remove duplicates
● Version control for corpus

Chunking Strategies
● Overlap handling
● Size optimization
● Context preservation
● Experimenting with different chunking sizes 

Embedding Selection
● Model comparison
● Domain adaptation
● Cost vs. performance



RAG & Context Challenges: Lost in the Middle

● As the "Lost in the Middle" paper  demonstrated (see the figure above), the effective 
context length for models to retrieve and utilize information tops out around 2000 tokens



RAG Techniques to Reduce Hallucinations

Always verified & up-to-date data: Retrieval of verified data ensures factual accuracy.

Example:

● Query: "What are global temperature trends?"
● Without RAG: "Outdated Data”
● With RAG: "Global temperatures rise ~0.18°C per decade (source: IPCC)."



Metadata Filtering & Advanced RAG Techniques

1. Reducing Noise: Use semantic similarity filters to focus on relevant data.
2. Metadata Filtering: Leverage document tags to refine retrieval.
3. Hybrid Search: Combine RAG with Keyword Based Search.

Example

Query: "How do I set up international roaming on my iPhone 15 Mobile Plus plan?"

Filtered Retrieval: Only documents tagged with “iPhone 15”, "international roaming" 

That way other documents tagged international roaming Android don’t get selected by semantic search even if they have a 
higher match score.



Agents, agents, agents

An AI Agent is a system that is capable of autonomously 

performing tasks on behalf of a user or another system.

“Agents are the new apps,” HubSpot CTO and 

co-founder Dharmesh Shah 

 Tons of companies including Google is reportedly working 

on AI agents that can make purchases, such as booking 

flights and hotels

 







Agentic RAG: Persana Quantum Agent Example

Quantum Agent: one of the most used Persana 
features with 5M+ usages in the last 90 days



Evaluating & Monitoring RAG & Agents

- Create a test data set and with every iteration ensure your RAG 

pipeline platform answers them effectively

- Monitor RAG in production with tools like Okareo, Galileo

- RAGAS Evaluation Metrics for RAG and Agents (Python package)

Source: Okareo



Source: Galileo



Source: Galileo



Agent Evaluation Framework

Comprehensive Agent Evaluation

- Beyond just skills: evaluating the complete agent pipeline

- Key areas: Router, Execution Path, and Performance

- Critical for reliable agent systems



1. Skill Selection Accuracy

   • Critical: Router's ability to choose correct function

   • Common issues: Poor prompts, unclear function descriptions

   • Metrics: Selection accuracy, handling of ambiguous queries

Agent Router Evaluation



Agent Router Evaluation
2. Parameter Extraction

   • Accurate extraction of function parameters

   • Edge case handling (e.g., order status with tracking numbers)

   • Testing overlapping parameter scenarios

   • Using LLM judges (e.g., Arize) for accuracy evaluation

Implementation Tips:

   • Regular testing with edge case,  Clear function descriptions,  Continuous prompt refinement



Agent Path & Performance Monitoring

1. Execution Path Evaluation

   • Track number of steps per query type

   • Monitor for loops and repetitive steps

   • Measure overall path & cost efficiency

2. Implementation Tools & Best Practices

   • Add iteration counters, Implement observability platforms (Arize AI, Galieo, Okareo)



Bias & Ethics: Our Responsibility

● The Challenge of Bias:
○ Bias in training data leads to biased outputs.
○ Disproportionate harm in sensitive domains (e.g., hiring, healthcare, criminal justice).
○ Example: A loan approval model disproportionately rejecting applicants from specific demographics.

● Why It Matters:
○ Erosion of user trust.
○ Legal and reputational risks.

● Mitigation Strategies:
○ Diverse and inclusive training data.
○ Regular audits for bias detection.
○ Incorporating fairness metrics (e.g., demographic parity).

● Role of RAG & Agents:
○ Grounded retrieval reduces bias from fabricated information.
○ Agents can be designed to flag ethically sensitive outputs.

“"AI systems are only as fair as the data they're trained on."”



Key Takeaways
● LLM Challenges: Hallucinations and bias undermine trust and 

reliability.
● Mitigation Techniques: Effective prompting, RAG, and self-checking 

models reduce risks.
● AI Agents: Autonomous agents are the future—when grounded and 

monitored properly.
● Ethics First: Prioritize fairness, inclusivity, and transparency in AI 

design.
● Continuous Evaluation: Regular monitoring & evaluations are 

essential for scalable, reliable AI systems.



- Connect with me on LinkedIn 
(linkedin.com/in/rusheelshahani)

- Persana AI if you are interested in 
automating your sales with AI

Exclusive Manning discount to read 
LLM reliability and dive deeper into these 
topics with code examples
bit.ly/llmreliability
Coupon - ACM45 (40% off ACM exclusive)

Thank you for joining—together, we build the 
future of AI!

http://linkedin.com/in/rusheelshahani
http://bit.ly/llmreliability

