The Five Tribes of Machine Learning with Pedro Domingos

There are five main schools of thought in machine learning, and each has its own master algorithm – a general-purpose learner that can in principle be applied to any domain. The symbolists have inverse deduction, the connectionists have backpropagation, the evolutionaries have genetic programming, the Bayesians have probabilistic inference, and the analogizers have support vector machines. What we really need, however, is a single algorithm combining the key features of all of them. In this webinar I will summarize the five paradigms and describe my work toward unifying them, including in particular Markov logic networks. I will conclude by speculating on the new applications that a universal learner will enable, and how society will change as a result.

Pedro Domingos

Pedro Domingos is a professor of computer science at the University of Washington in Seattle. He is a winner of the SIGKDD Innovation Award, the highest honor in data science. He is a Fellow of the Association for the Advancement of Artificial Intelligence, and has received a Fulbright Scholarship, a Sloan Fellowship, the National Science Foundation’s CAREER Award, and numerous best paper awards. He received his Ph.D. from the University of California at Irvine and is the author or co-author of over 200 technical publications. He has held visiting positions at Stanford, Carnegie Mellon, and MIT. He co-founded the International Machine Learning Society in 2001. His research spans a wide variety of topics in machine learning, artificial intelligence, and data science, including scaling learning algorithms to big data, maximizing word of mouth in social networks, unifying logic and probability, and deep learning.